Équations différentielles algébriques
Jean-Louis Verdier (1977/1978)
Séminaire Bourbaki
Jean-Michel Bismut (1990)
Mathematische Annalen
Lück, Wolfgang, Rosenberg, Jonathan (2003)
Geometry & Topology
Patrick Gérard, Eric Leichtnam (1991/1992)
Séminaire Équations aux dérivées partielles (Polytechnique)
Y. Colin de Verdière (1984/1985)
Séminaire Équations aux dérivées partielles (Polytechnique)
Ľubomír Baňas, Zdzisław Brzeźniak, Mikhail Neklyudov, Martin Ondreját, Andreas Prohl (2015)
Czechoslovak Mathematical Journal
We study ergodic properties of stochastic geometric wave equations on a particular model with the target being the 2D sphere while considering only solutions which are independent of the space variable. This simplification leads to a degenerate stochastic equation in the tangent bundle of the 2D sphere. Studying this equation, we prove existence and non-uniqueness of invariant probability measures for the original problem and obtain also results on attractivity towards an invariant measure. We also...
E. Carletti, G. Monti Bragadin (1997)
Acta Arithmetica
M. Atiyah, R. Bott, V.K. Patodi (1975)
Inventiones mathematicae
Wilfried Schmid, Michael Atiyah (1979)
Inventiones mathematicae
F. Golse (1993/1994)
Séminaire Équations aux dérivées partielles (Polytechnique)
Wolfgang Woess (2002)
Bollettino dell'Unione Matematica Italiana
J.J. Duistermaat, J.A.C. Kolk (1979)
Inventiones mathematicae
M. Gromov, M. Shubin (1995)
Geometric and functional analysis
Ari Laptev, Yu Safarov (1991)
Journées équations aux dérivées partielles
V. Brousseau (1990)
Annales de l'I.H.P. Analyse non linéaire
François Wamon (2001)
Annales de la Faculté des sciences de Toulouse : Mathématiques
François Rouvière (1986)
Annales scientifiques de l'École Normale Supérieure
Andreas Čap, Karin Melnick (2013)
Open Mathematics
We use the general theory developed in our article [Čap A., Melnick K., Essential Killing fields of parabolic geometries, Indiana Univ. Math. J. (in press)], in the setting of parabolic geometries to reprove known results on special infinitesimal automorphisms of projective and conformal geometries.
Mikhail Shubin (1998/1999)
Séminaire Équations aux dérivées partielles
We give a condition of essential self-adjointness for magnetic Schrödinger operators on non-compact Riemannian manifolds with a given positive smooth measure which is fixed independently of the metric. This condition is related to the classical completeness of a related classical hamiltonian without magnetic field. The main result generalizes the result by I. Oleinik [29,30,31], a shorter and more transparent proof of which was provided by the author in [41]. The main idea, as in [41], consists...
Steven G. Krantz (1979/1980)
Manuscripta mathematica