Previous Page 4

Displaying 61 – 69 of 69

Showing per page

Rigidity and L 2 cohomology of hyperbolic manifolds

Gilles Carron (2010)

Annales de l’institut Fourier

When X = Γ n is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of L 2 harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.

Rigidity at infinity for even-dimensional asymptotically complex hyperbolic spaces

Hassan Boualem, Marc Herzlich (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Any Kähler metric on the ball which is strongly asymptotic to complex hyperbolic space and whose scalar curvature is no less than the one of the complex hyperbolic space must be isometrically biholomorphic to it. This result has been known for some time in odd complex dimension and we provide here a proof in even dimension.

Currently displaying 61 – 69 of 69

Previous Page 4