Displaying 41 – 60 of 69

Showing per page

Resolvent at low energy and Riesz transform for Schrödinger operators on asymptotically conic manifolds. II

Colin Guillarmou, Andrew Hassell (2009)

Annales de l’institut Fourier

Let M be a complete noncompact manifold of dimension at least 3 and g an asymptotically conic metric on M , in the sense that M compactifies to a manifold with boundary M so that g becomes a scattering metric on M . We study the resolvent kernel ( P + k 2 ) - 1 and Riesz transform T of the operator P = Δ g + V , where Δ g is the positive Laplacian associated to g and V is a real potential function smooth on M and vanishing at the boundary.In our first paper we assumed that P has neither zero modes nor a zero-resonance and showed...

Résonances

Yves Colin de Verdière (1984/1985)

Séminaire de théorie spectrale et géométrie

Riesz means for the eigenfunction expansions for a class of hypo-elliptic differential operators

Giancarlo Mauceri (1981)

Annales de l'institut Fourier

We study the Riesz means for the eigenfunction expansions of a class of hypoelliptic differential operators on the Heisenberg group. The operators we consider are homogeneous with respect to dilations and invariant under the action of the unitary group. We obtain convergence results in L p norm, at Lebesgue points and almost everywhere. We also prove localization results.

Riesz meets Sobolev

Thierry Coulhon, Adam Sikora (2010)

Colloquium Mathematicae

We show that the L p boundedness, p > 2, of the Riesz transform on a complete non-compact Riemannian manifold with upper and lower Gaussian heat kernel estimates is equivalent to a certain form of Sobolev inequality. We also characterize in such terms the heat kernel gradient upper estimate on manifolds with polynomial growth.

Riesz potentials and amalgams

Michael Cowling, Stefano Meda, Roberta Pasquale (1999)

Annales de l'institut Fourier

Let ( M , d ) be a metric space, equipped with a Borel measure μ satisfying suitable compatibility conditions. An amalgam A p q ( M ) is a space which looks locally like L p ( M ) but globally like L q ( M ) . We consider the case where the measure μ ( B ( x , ρ ) of the ball B ( x , ρ ) with centre x and radius ρ behaves like a polynomial in ρ , and consider the mapping properties between amalgams of kernel operators where the kernel ker K ( x , y ) behaves like d ( x , y ) - a when d ( x , y ) 1 and like d ( x , y ) - b when d ( x , y ) 1 . As an application, we describe Hardy–Littlewood–Sobolev type regularity theorems...

Riesz transform on manifolds and Poincaré inequalitie

Pascal Auscher, Thierry Coulhon (2005)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

We study the validity of the L p inequality for the Riesz transform when p > 2 and of its reverse inequality when 1 < p < 2 on complete riemannian manifolds under the doubling property and some Poincaré inequalities.

Riesz transforms on connected sums

Gilles Carron (2007)

Annales de l’institut Fourier

Assume that M 0 is a complete Riemannian manifold with Ricci curvature bounded from below and that M 0 satisfies a Sobolev inequality of dimension ν > 3 . Let M be a complete Riemannian manifold isometric at infinity to M 0 and let p ( ν / ( ν - 1 ) , ν ) . The boundedness of the Riesz transform of L p ( M 0 ) then implies the boundedness of the Riesz transform of L p ( M )

Currently displaying 41 – 60 of 69