Displaying 541 – 560 of 1890

Showing per page

Estimation in models driven by fractional brownian motion

Corinne Berzin, José R. León (2008)

Annales de l'I.H.P. Probabilités et statistiques

Let {bH(t), t∈ℝ} be the fractional brownian motion with parameter 0<H<1. When 1/2<H, we consider diffusion equations of the type X(t)=c+∫0tσ(X(u)) dbH(u)+∫0tμ(X(u)) du. In different particular models where σ(x)=σ or σ(x)=σ  x and μ(x)=μ or μ(x)=μ  x, we propose a central limit theorem for estimators of H and of σ based on regression methods. Then we give tests of the hypothesis on σ for these models. We also consider functional estimation on σ(⋅)...

Étude d’une transformation non uniformément hyperbolique de l’intervalle [ 0 , 1 [

Albert Raugi (2004)

Bulletin de la Société Mathématique de France

Nous étudions un exemple de transformation non uniformément hyperbolique de l’intervalle [ 0 , 1 [ . Des exemples analogues ont été étudiés par de nombreux auteurs. Notre méthode utilise une théorie spectrale, pour une classe d’opérateurs vérifiant des conditions faibles de Doeblin-Fortet, introduite dans [1]. Elle nous permet, en particulier, de donner une estimation de la vitesse de décroissance des corrélations pour des fonctions non höldériennes.

Euler's Approximations of Solutions of Reflecting SDEs with Discontinuous Coefficients

Alina Semrau-Giłka (2013)

Bulletin of the Polish Academy of Sciences. Mathematics

Let D be either a convex domain in d or a domain satisfying the conditions (A) and (B) considered by Lions and Sznitman (1984) and Saisho (1987). We investigate convergence in law as well as in L p for the Euler and Euler-Peano schemes for stochastic differential equations in D with normal reflection at the boundary. The coefficients are measurable, continuous almost everywhere with respect to the Lebesgue measure, and the diffusion coefficient may degenerate on some subsets of the domain.

Euler's Approximations of Weak Solutions of Reflecting SDEs with Discontinuous Coefficients

Alina Semrau (2007)

Bulletin of the Polish Academy of Sciences. Mathematics

We study convergence in law for the Euler and Euler-Peano schemes for stochastic differential equations reflecting on the boundary of a general convex domain. We assume that the coefficients are measurable and continuous almost everywhere with respect to the Lebesgue measure. The proofs are based on new estimates of Krylov's type for the approximations considered.

Exact laws for sums of ratios of order statistics from the Pareto distribution

André Adler (2006)

Open Mathematics

Consider independent and identically distributed random variables {X nk, 1 ≤ k ≤ m, n ≤ 1} from the Pareto distribution. We select two order statistics from each row, X n(i) ≤ X n(j), for 1 ≤ i < j ≤ = m. Then we test to see whether or not Laws of Large Numbers with nonzero limits exist for weighted sums of the random variables R ij = X n(j)/X n(i).

Currently displaying 541 – 560 of 1890