Displaying 61 – 80 of 154

Showing per page

Stability of precise Laplace's method under approximations; Applications

A. Guionnet (2010)

ESAIM: Probability and Statistics

We study the fluctuations around non degenerate attractors of the empirical measure under mean field Gibbs measures. We prove that a mild change of the densities of these measures does not affect the central limit theorems. We apply this result to generalize the assumptions of [3] and [12] on the densities of the Gibbs measures to get precise Laplace estimates.

Stability of solutions of BSDEs with random terminal time

Sandrine Toldo (2006)

ESAIM: Probability and Statistics

In this paper, we study the stability of the solutions of Backward Stochastic Differential Equations (BSDE for short) with an almost surely finite random terminal time. More precisely, we are going to show that if (Wn) is a sequence of scaled random walks or a sequence of martingales that converges to a Brownian motion W and if ( τ n ) is a sequence of stopping times that converges to a stopping time τ, then the solution of the BSDE driven by Wn with random terminal time τ n converges to the solution...

Statistical convergence of a sequence of random variables and limit theorems

Sanjoy Ghosal (2013)

Applications of Mathematics

In this paper the ideas of three types of statistical convergence of a sequence of random variables, namely, statistical convergence in probability, statistical convergence in mean of order r and statistical convergence in distribution are introduced and the interrelation among them is investigated. Also their certain basic properties are studied.

Stein’s method in high dimensions with applications

Adrian Röllin (2013)

Annales de l'I.H.P. Probabilités et statistiques

Let h be a three times partially differentiable function on n , let X = ( X 1 , ... , X n ) be a collection of real-valued random variables and let Z = ( Z 1 , ... , Z n ) be a multivariate Gaussian vector. In this article, we develop Stein’s method to give error bounds on the difference 𝔼 h ( X ) - 𝔼 h ( Z ) in cases where the coordinates of X are not necessarily independent, focusing on the high dimensional case n . In order to express the dependency structure we use Stein couplings, which allows for a broad range of applications, such as classic occupancy,...

Stochastic foundations of the universal dielectric response

Agnieszka Jurlewicz (2003)

Applicationes Mathematicae

We present a probabilistic model of the microscopic scenario of dielectric relaxation. We prove a limit theorem for random sums of a special type that appear in the model. By means of the theorem, we show that the presented approach to relaxation phenomena leads to the well known Havriliak-Negami empirical dielectric response provided the physical quantities in the relaxation scheme have heavy-tailed distributions. The mathematical model, presented here in the context of dielectric relaxation, can...

Currently displaying 61 – 80 of 154