Displaying 101 – 120 of 154

Showing per page

Strong laws of large numbers in certain linear spaces

Wojbor A. Woyczynski (1974)

Annales de l'institut Fourier

In this paper we are concerned with the norm almost sure convergence of series of random vectors taking values in some linear metric spaces and strong laws of large numbers for sequences of such random vectors. Section 2 treats the Banach space case where the results depend upon the geometry of the unit cell. Section 3 deals with spaces equipped with a non-necessarily homogeneous F -norm and in Section 4 we restrict our attention to sequences of identically distributed random vectors.

Sumas de productos de variables aleatorias independientes igualmente distribuidas (V.A.I.I.D.).

Ricardo Vélez, Víctor Hernández (1986)

Trabajos de Estadística

In this paper we get some results about the asymptotic behaviour of the sequenceΠn = 1 + X1 + X1X2 + X1X2X3 + ...where {Xn}n=1∞ are i.i.d. random variables. Strong limit laws, Central limit theorem and Iterated Logarithm law are obtained, after an analysis of the convergence of Πn. Rates of convergence are also given.

Sums of a Random Number of Random Variables and their Approximations with ν- Accompanying Infinitely Divisible Laws

Klebanov, Lev, Rachev, Svetlozar (1996)

Serdica Mathematical Journal

* Research supported by NATO GRANT CRG 900 798 and by Humboldt Award for U.S. Scientists.In this paper a general theory of a random number of random variables is constructed. A description of all random variables ν admitting an analog of the Gaussian distribution under ν-summation, that is, the summation of a random number ν of random terms, is given. The v-infinitely divisible distributions are described for these ν-summations and finite estimates of the approximation of ν-sum distributions with...

S-unimodal Misiurewicz maps with flat critical points

Roland Zweimüller (2004)

Fundamenta Mathematicae

We consider S-unimodal Misiurewicz maps T with a flat critical point c and show that they exhibit ergodic properties analogous to those of interval maps with indifferent fixed (or periodic) points. Specifically, there is a conservative ergodic absolutely continuous σ-finite invariant measure μ, exact up to finite rotations, and in the infinite measure case the system is pointwise dual ergodic with many uniform and Darling-Kac sets. Determining the order of return distributions to suitable reference...

Sur la convergence en moyenne pour des vecteurs aléatoires intégrables au sens de Bochner

Luca Pratelli (1992)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The problem of finding simple additional conditions, for a weakly convergent sequence in L 1 , which would suffice to imply strong convergence has been widely studied in recent years. In this Note we study this problem for Banach valued random vectors, by replacing weak convergence with a less restrictive assumption. Moreover, all the additional conditions we consider are also necessary for strong convergence, and they depend only on marginal distributions.

Sur la convergence faible des systèmes dynamiques échantillonnés

Nadine Guillotin-Plantard (2004)

Annales de l’institut Fourier

Soit T α la rotation sur le cercle d’angle irrationnel α , soit ( S k ) k 0 une marche aléatoire transiente sur . Soit f L 2 ( μ ) et H ] 0 , 1 [ , nous étudions la convergence faible de la suite 1 n H k = 0 [ n t ] - 1 f T α S k , n 1 .

Currently displaying 101 – 120 of 154