Small deviations of Gaussian random fields in -spaces.
This is a review paper about some problems of statistical inference for one-parameter stochastic processes, mainly based upon the observation of a convolution of the path with a non-random kernel. Most of the results are known and presented without proofs. The tools are first and second order approximation theorems of the occupation measure of the path, by means of functionals defined on the smoothed paths. Various classes of stochastic processes are considered starting with the Wiener process,...
Let , be two independent, -dimensional bifractional Brownian motions with respective indices and . Assume . One of the main motivations of this paper is to investigate smoothness of the collision local time where denotes the Dirac delta function. By an elementary method we show that is smooth in the sense of Meyer-Watanabe if and only if .
Regularity of stochastic convolutions corresponding to a Volterra equation, perturbed by a white noise, is studied. Under suitable assumptions, hölderianity of the corresponding trajectories is proved.
Over fifty years ago, Irving Segal proved a theorem which leads to a characterization of those orthogonal transformations on a Hilbert space which induce ergodic transformations. Because Segal did not present his result in a way which made it readily accessible to specialists in ergodic theory, it was difficult for them to appreciate what he had done. The purpose of this note is to state and prove Segal's result in a way which, I hope, will win it the recognition which it deserves.
We describe how the resolution of a kernel-based interpolation problem can be associated with a spectral problem. An integral operator is defined from the embedding of the considered Hilbert subspace into an auxiliary Hilbert space of square-integrable functions. We finally obtain a spectral representation of the interpolating elements which allows their approximation by spectral truncation. As an illustration, we show how this approach can be used to enforce boundary conditions in kernel-based...
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
We recall necessary notions about the geometry and harmonic analysis on a hyperbolic space and provide lecture notes about homogeneous random functions parameterized by this space. The general principles are illustrated by construction of numerous examples analogous to Euclidean case. We also give a brief survey of the fields parameterized by Euclidean spheres. At the end we give a list of important open questions in hyperbolic case.
In statistical inference on the drift parameter in the Wiener process with a constant drift there is a large number of options how to do it. We may, for example, base this inference on the properties of the standard normal distribution applied to the differences between the observed values of the process at discrete times. Although such methods are very simple, it turns out that more appropriate is to use the sequential methods. For the hypotheses testing about the drift parameter it is more...