A remark on the equivalence of Gaussian processes.
In this paper we solve the basic fractional analogue of the classical linear-quadratic gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.
In this paper we solve the basic fractional analogue of the classical linear-quadratic Gaussian regulator problem in continuous time. For a completely observable controlled linear system driven by a fractional Brownian motion, we describe explicitely the optimal control policy which minimizes a quadratic performance criterion.
We study actuarial methods of option pricing in a fractional Black-Scholes model with time-dependent volatility. We interpret the option as a potential loss and we show that the fair premium needed to insure this loss coincides with the expectation of the discounted claim payoff under the average risk neutral measure.
Gaussian Process models are often used for predicting and approximating expensive experiments. However, the number of observations required for building such models may become unrealistic when the input dimension increases. In oder to avoid the curse of dimensionality, a popular approach in multivariate smoothing is to make simplifying assumptions like additivity. The ambition of the present work is to give an insight into a family of covariance kernels that allows combining the features of Gaussian...