Réflexion discontinue et systèmes stochastiques
Let be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process belonging to the space (see Definition II.2). The Skorokhod integral is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process . More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and with 1/α < p < ∞, then a.s. for all q ∈ [1,∞], and . (2) For every even integer p ≥...
In this paper we prove that a Gaussian white noise on the d-dimensional torus has paths in the Besov spaces with p ∈ [1,∞). This result is shown to be optimal in several ways. We also show that Gaussian white noise on the d-dimensional torus has paths in the Fourier-Besov space . This is shown to be optimal as well.
We study regularity of stochastic convolutions solving Volterra equations on driven by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations with fractional powers of Laplacian.
We prove that the exit times of diffusion processes from a bounded open set Ω almost surely belong to the Besov space provided that pα < 1 and 1 ≤ q < ∞.
Si studiano proprietà di regolarità di un integrale di convoluzione del tipo Itȏ.
We prove some smoothing properties for the transition semigroup associated to a nonlinear stochastic equation in a Hilbert space. The proof introduces some tools from the Malliavin calculus and is based on a integration by parts formula.
Let denote a generalized Wiener space, the space of real-valued continuous functions on the interval , and define a random vector by where , , and is a partition of . Using simple formulas for generalized conditional Wiener integrals, given we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra . Finally, we express the generalized analytic conditional Feynman...