Displaying 41 – 60 of 91

Showing per page

Régularité Besov des trajectoires du processus intégral de Skorokhod

Gérard Lorang (1996)

Studia Mathematica

Let W t : 0 t 1 be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process u t : 0 t 1 belonging to the space 2 , 1 (see Definition II.2). The Skorokhod integral U t = ʃ 0 t u δ W is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process t U t . More precisely, we prove the following THEOREM III.1. (1)If 0 < α < 1/2 and u p , 1 with 1/α < p < ∞, then a.s. t U t p , q α for all q ∈ [1,∞], and t U t p , α , 0 . (2) For every even integer p ≥...

Regularity of Gaussian white noise on the d-dimensional torus

Mark C. Veraar (2011)

Banach Center Publications

In this paper we prove that a Gaussian white noise on the d-dimensional torus has paths in the Besov spaces B p , - d / 2 ( d ) with p ∈ [1,∞). This result is shown to be optimal in several ways. We also show that Gaussian white noise on the d-dimensional torus has paths in the Fourier-Besov space b ̂ p , - d / p ( d ) . This is shown to be optimal as well.

Regularity of solutions to stochastic Volterra equations

Anna Karczewska, Jerzy Zabczyk (2000)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We study regularity of stochastic convolutions solving Volterra equations on R d driven by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations with fractional powers of Laplacian.

Regularity properties of a stochastic convolution integral

Giuseppe Da Prato (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si studiano proprietà di regolarità di un integrale di convoluzione del tipo Itȏ.

Regularity results for infinite dimensional diffusions. A Malliavin calculus approach

Stefano Bonaccorsi, Marco Fuhrman (1999)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove some smoothing properties for the transition semigroup associated to a nonlinear stochastic equation in a Hilbert space. The proof introduces some tools from the Malliavin calculus and is based on a integration by parts formula.

Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths

Byoung Soo Kim, Dong Hyun Cho (2017)

Czechoslovak Mathematical Journal

Let C [ 0 , t ] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [ 0 , t ] , and define a random vector Z n : C [ 0 , t ] n + 1 by Z n ( x ) = x ( 0 ) + a ( 0 ) , 0 t 1 h ( s ) d x ( s ) + x ( 0 ) + a ( t 1 ) , , 0 t n h ( s ) d x ( s ) + x ( 0 ) + a ( t n ) , where a C [ 0 , t ] , h L 2 [ 0 , t ] , and 0 < t 1 < < t n t is a partition of [ 0 , t ] . Using simple formulas for generalized conditional Wiener integrals, given Z n we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions F in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra 𝒮 . Finally, we express the generalized analytic conditional Feynman...

Currently displaying 41 – 60 of 91