Displaying 681 – 700 of 1721

Showing per page

Integration in a dynamical stochastic geometric framework

Giacomo Aletti, Enea G. Bongiorno, Vincenzo Capasso (2011)

ESAIM: Probability and Statistics

Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...

Integration in a dynamical stochastic geometric framework

Giacomo Aletti, Enea G. Bongiorno, Vincenzo Capasso (2012)

ESAIM: Probability and Statistics

Motivated by the well-posedness of birth-and-growth processes, a stochastic geometric differential equation and, hence, a stochastic geometric dynamical system are proposed. In fact, a birth-and-growth process can be rigorously modeled as a suitable combination, involving the Minkowski sum and the Aumann integral, of two very general set-valued processes representing nucleation and growth dynamics, respectively. The simplicity of the proposed geometric approach allows to avoid problems of boundary...

Intermittency properties in a hyperbolic Anderson problem

Robert C. Dalang, Carl Mueller (2009)

Annales de l'I.H.P. Probabilités et statistiques

We study the asymptotics of the even moments of solutions to a stochastic wave equation in spatial dimension 3 with linear multiplicative spatially homogeneous gaussian noise that is white in time. Our main theorem states that these moments grow more quickly than one might expect. This phenomenon is well known for parabolic stochastic partial differential equations, under the name of intermittency. Our results seem to be the first example of this phenomenon for hyperbolic equations. For comparison,...

Invariance of Poisson measures under random transformations

Nicolas Privault (2012)

Annales de l'I.H.P. Probabilités et statistiques

We prove that Poisson measures are invariant under (random) intensity preserving transformations whose finite difference gradient satisfies a cyclic vanishing condition. The proof relies on moment identities of independent interest for adapted and anticipating Poisson stochastic integrals, and is inspired by the method of Üstünel and Zakai (Probab. Theory Related Fields103 (1995) 409–429) on the Wiener space, although the corresponding algebra is more complex than in the Wiener case. The examples...

Invariant measure for some differential operators and unitarizing measure for the representation of a Lie group. Examples in finite dimension

Hélène Airault, Habib Ouerdiane (2011)

Banach Center Publications

Consider a Lie group with a unitary representation into a space of holomorphic functions defined on a domain 𝓓 of ℂ and in L²(μ), the measure μ being the unitarizing measure of the representation. On finite-dimensional examples, we show that this unitarizing measure is also the invariant measure for some differential operators on 𝓓. We calculate these operators and we develop the concepts of unitarizing measure and invariant measure for an OU operator (differential operator associated to...

Invariant measures and a stability theorem for locally Lipschitz stochastic delay equations

I. Stojkovic, O. van Gaans (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider a stochastic delay differential equation with exponentially stable drift and diffusion driven by a general Lévy process. The diffusion coefficient is assumed to be locally Lipschitz and bounded. Under a mild condition on the large jumps of the Lévy process, we show existence of an invariant measure. Main tools in our proof are a variation-of-constants formula and a stability theorem in our context, which are of independent interest.

Invariant measures for nonlinear SPDE's: uniqueness and stability

Bohdan Maslowski, Jan Seidler (1998)

Archivum Mathematicum

The paper presents a review of some recent results on uniqueness of invariant measures for stochastic differential equations in infinite-dimensional state spaces, with particular attention paid to stochastic partial differential equations. Related results on asymptotic behaviour of solutions like ergodic theorems and convergence of probability laws of solutions in strong and weak topologies are also reviewed.

Currently displaying 681 – 700 of 1721