Displaying 61 – 80 of 122

Showing per page

Conditions implying regularity of the three dimensional Navier-Stokes equation

Stephen Montgomery-Smith (2005)

Applications of Mathematics

We obtain logarithmic improvements for conditions for regularity of the Navier-Stokes equation, similar to those of Prodi-Serrin or Beale-Kato-Majda. Some of the proofs make use of a stochastic approach involving Feynman-Kac-like inequalities. As part of our methods, we give a different approach to a priori estimates of Foiaş, Guillopé and Temam.

Conservation property of symmetric jump processes

Jun Masamune, Toshihiro Uemura (2011)

Annales de l'I.H.P. Probabilités et statistiques

Motivated by the recent development in the theory of jump processes, we investigate its conservation property. We will show that a jump process is conservative under certain conditions for the volume-growth of the underlying space and the jump rate of the process. We will also present examples of jump processes which satisfy these conditions.

Constrained controllability of nonlinear stochastic impulsive systems

Shanmugasundaram Karthikeyan, Krishnan Balachandran (2011)

International Journal of Applied Mathematics and Computer Science

This paper is concerned with complete controllability of a class of nonlinear stochastic systems involving impulsive effects in a finite time interval by means of controls whose initial and final values can be assigned in advance. The result is achieved by using a fixed-point argument.

Continuity of stochastic convolutions

Zdzisław Brzeźniak, Szymon Peszat, Jerzy Zabczyk (2001)

Czechoslovak Mathematical Journal

Let B be a Brownian motion, and let 𝒞 p be the space of all continuous periodic functions f with period 1. It is shown that the set of all f 𝒞 p such that the stochastic convolution X f , B ( t ) = 0 t f ( t - s ) d B ( s ) , t [ 0 , 1 ] does not have a modification with bounded trajectories, and consequently does not have a continuous modification, is of the second Baire category.

Continuity versus nonexistence for a class of linear stochastic Cauchy problems driven by a Brownian motion

Johanna Dettweiler, J.M.A.M. van Neerven (2006)

Czechoslovak Mathematical Journal

Let A = d / d θ denote the generator of the rotation group in the space C ( Γ ) , where Γ denotes the unit circle. We show that the stochastic Cauchy problem d U ( t ) = A U ( t ) + f d b t , U ( 0 ) = 0 , ( 1 ) where b is a standard Brownian motion and f C ( Γ ) is fixed, has a weak solution if and only if the stochastic convolution process t ( f * b ) t has a continuous modification, and that in this situation the weak solution has a continuous modification. In combination with a recent result of Brzeźniak, Peszat and Zabczyk it follows that (1) fails to have a weak solution for all...

Continuous feedback stabilization for a class of affine stochastic nonlinear systems

Mohamed Oumoun, Lahcen Maniar, Abdelghafour Atlas (2020)

Kybernetika

We investigate the state feedback stabilization, in the sense of weak solution, of nonlinear stochastic systems when the drift is quadratic in the control and the diffusion term is affine in the control. Based on the generalised stochastic Lyapunov theorem, we derive the necessary conditions and the sufficient conditions, respectively, for the global asymptotic stabilization in probability by a continuous feedback explicitly computed. The interest of this work is that the existing control methods...

Currently displaying 61 – 80 of 122