Displaying 161 – 180 of 193

Showing per page

Strong and weak stability of some Markov operators

Ryszard Rudnicki (2000)

Colloquium Mathematicae

An integral Markov operator P appearing in biomathematics is investigated. This operator acts on the space of probabilistic Borel measures. Let μ and ν be probabilistic Borel measures. Sufficient conditions for weak and strong convergence of the sequence ( P n μ - P n ν ) to 0 are given.

Structure of mixing and category of complete mixing for stochastic operators

Anzelm Iwanik, Ryszard Rębowski (1992)

Annales Polonici Mathematici

Let T be a stochastic operator on a σ-finite standard measure space with an equivalent σ-finite infinite subinvariant measure λ. Then T possesses a natural "conservative deterministic factor" Φ which is the Frobenius-Perron operator of an invertible measure preserving transformation φ. Moreover, T is mixing ("sweeping") iff φ is a mixing transformation. Some stronger versions of mixing are also discussed. In particular, a notion of *L¹-s.o.t. mixing is introduced and characterized in terms of weak...

Sur quelques algorithmes récursifs pour les probabilités numériques

Gilles Pagès (2001)

ESAIM: Probability and Statistics

The aim of this paper is to take an in-depth look at the long time behaviour of some continuous time markovian dynamical systems and at its numerical analysis. We first propose a short overview of the main ergodicity properties of time continuous homogeneous Markov processes (stability, positive recurrence). The basic tool is a Lyapunov function. Then, we investigate if these properties still hold for the time discretization of these processes, either with constant or decreasing step (ODE method...

Sur quelques algorithmes récursifs pour les probabilités numériques

Gilles Pagès (2010)

ESAIM: Probability and Statistics

The aim of this paper is to take an in-depth look at the long time behaviour of some continuous time Markovian dynamical systems and at its numerical analysis. We first propose a short overview of the main ergodicity properties of time continuous homogeneous Markov processes (stability, positive recurrence). The basic tool is a Lyapunov function. Then, we investigate if these properties still hold for the time discretization of these processes, either with constant or decreasing step (ODE...

The Nagaev-Guivarc’h method via the Keller-Liverani theorem

Loïc Hervé, Françoise Pène (2010)

Bulletin de la Société Mathématique de France

The Nagaev-Guivarc’h method, via the perturbation operator theorem of Keller and Liverani, has been exploited in recent papers to establish limit theorems for unbounded functionals of strongly ergodic Markov chains. The main difficulty of this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier kernels. The paper outlines this method and extends it by stating a multidimensional local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth expansion,...

The rate of convergence for iterated function systems

Maciej Ślęczka (2011)

Studia Mathematica

Iterated function systems with place-dependent probabilities are considered. It is shown that the rate of convergence of transition probabilities to a unique invariant measure is geometric.

The risk-sensitive Poisson equation for a communicating Markov chain on a denumerable state space

Rolando Cavazos-Cadena (2009)

Kybernetika

This work concerns a discrete-time Markov chain with time-invariant transition mechanism and denumerable state space, which is endowed with a nonnegative cost function with finite support. The performance of the chain is measured by the (long-run) risk-sensitive average cost and, assuming that the state space is communicating, the existence of a solution to the risk-sensitive Poisson equation is established, a result that holds even for transient chains. Also, a sufficient criterion ensuring that...

The uniqueness of invariant measures for Markov operators

Tomasz Szarek (2008)

Studia Mathematica

It is shown that Markov operators with equicontinuous dual operators which overlap supports have at most one invariant measure. In this way we extend the well known result proved for Markov operators with the strong Feller property by R. Z. Khas'minski.

Currently displaying 161 – 180 of 193