The statistical equilibrium of an isotropic stochastic flow with negative Lyapounov exponents is trivial
We show that the only flow solving the stochastic differential equation (SDE) on
We solve explicitly the following problem: for a given probability measure μ, we specify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T, is distributed according to μ. The process (Xt) is specified via its speed measure m. We present two heuristic arguments and three proofs. First we show how the result can be derived from the solution of [Bertoin and Le Jan, Ann. Probab. 20 (1992) 538–548.] to the Skorokhod embedding problem. Secondly, we give a proof...
We solve explicitly the following problem: for a given probability measure μ, we specify a generalised martingale diffusion (Xt) which, stopped at an independent exponential time T, is distributed according to μ. The process (Xt) is specified via its speed measure m. We present two heuristic arguments and three proofs. First we show how the result can be derived from the solution of [Bertoin and Le Jan, Ann. Probab.20 (1992) 538–548.] to the Skorokhod embedding problem. Secondly, we give...
We investigate the transience/recurrence of a non-Markovian, one-dimensional diffusion process which consists of a Brownian motion with a non-anticipating drift that has two phases – a transient to mode which is activated when the diffusion is sufficiently near its running maximum, and a recurrent mode which is activated otherwise. We also consider the speed of a diffusion with a two-phase drift, where the drift is equal to a certain non-negative constant when the diffusion is sufficiently near...