Displaying 81 – 100 of 444

Showing per page

Degenerate stochastic differential equations for catalytic branching networks

Sandra Kliem (2009)

Annales de l'I.H.P. Probabilités et statistiques

Uniqueness of the martingale problem corresponding to a degenerate SDE which models catalytic branching networks is proven. This work is an extension of the paper by Dawson and Perkins [Illinois J. Math.50 (2006) 323–383] to arbitrary catalytic branching networks. As part of the proof estimates on the corresponding semigroup are found in terms of weighted Hölder norms for arbitrary networks, which are proven to be equivalent to the semigroup norm for this generalized setting.

Differentiability of excessive functions of one-dimensional diffusions and the principle of smooth fit

Paavo Salminen, Bao Quoc Ta (2015)

Banach Center Publications

The principle of smooth fit is probably the most used tool to find solutions to optimal stopping problems of one-dimensional diffusions. It is important, e.g., in financial mathematical applications to understand in which kind of models and problems smooth fit can fail. In this paper we connect-in case of one-dimensional diffusions-the validity of smooth fit and the differentiability of excessive functions. The basic tool to derive the results is the representation theory of excessive functions;...

Currently displaying 81 – 100 of 444