Displaying 141 – 160 of 444

Showing per page

Extending the Wong-Zakai theorem to reversible Markov processes

Richard F. Bass, B. Hambly, Terry Lyons (2002)

Journal of the European Mathematical Society

We show how to construct a canonical choice of stochastic area for paths of reversible Markov processes satisfying a weak Hölder condition, and hence demonstrate that the sample paths of such processes are rough paths in the sense of Lyons. We further prove that certain polygonal approximations to these paths and their areas converge in p -variation norm. As a corollary of this result and standard properties of rough paths, we are able to provide a significant generalization of the classical result...

Feller semigroups and degenerate elliptic operators with Wentzell boundary conditions

Kazuaki Taira, Angelo Favini, Silvia Romanelli (2001)

Studia Mathematica

This paper is devoted to the functional analytic approach to the problem of construction of Feller semigroups with Wentzell boundary conditions in the characteristic case. Our results may be stated as follows: We can construct Feller semigroups corresponding to a diffusion phenomenon including absorption, reflection, viscosity, diffusion along the boundary and jump at each point of the boundary.

General approximation method for the distribution of Markov processes conditioned not to be killed

Denis Villemonais (2014)

ESAIM: Probability and Statistics

We consider a strong Markov process with killing and prove an approximation method for the distribution of the process conditioned not to be killed when it is observed. The method is based on a Fleming−Viot type particle system with rebirths, whose particles evolve as independent copies of the original strong Markov process and jump onto each others instead of being killed. Our only assumption is that the number of rebirths of the Fleming−Viot type system doesn’t explode in finite time almost surely...

Currently displaying 141 – 160 of 444