Addendum : “A semi-markovian model for the brownian motion”
We show that whenever the -dimensional Minkowski content of a subset exists and is finite and positive, then the “S-content” defined analogously as the Minkowski content, but with volume replaced by surface area, exists as well and equals the Minkowski content. As a corollary, we obtain the almost sure asymptotic behaviour of the surface area of the Wiener sausage in , .
We study a one-dimensional brownian motion conditioned on a self-repelling behaviour. Given a nondecreasing positive function f(t), t≥0, consider the measures μt obtained by conditioning a brownian path so that Ls≤f(s), for all s≤t, where Ls is the local time spent at the origin by time s. It is shown that the measures μt are tight, and that any weak limit of μt as t→∞ is transient provided that t−3/2f(t) is integrable. We conjecture that this condition is sharp and present a number of open problems....