Displaying 181 – 200 of 298

Showing per page

Processus de naissance avec interaction des voisins, évolution de graphes

Jacques Peyrière (1981)

Annales de l'institut Fourier

On définit de nouveaux processus de naissance à temps discret; la population est, à chaque instant, organisée en graphe. Pour obtenir la ( n + 1 ) -ième génération on remplace aléatoirement les sommets de la n -ième génération par des graphes que l’on accroche convenablement les uns aux autres. On autorise une certaine dépendance entre les substitutions de sommets voisins. On étudie, pour certains processus surcritiques, la croissance de la population et la structure des graphes générés : sous des hypothèses...

Pruning Galton–Watson trees and tree-valued Markov processes

Romain Abraham, Jean-François Delmas, Hui He (2012)

Annales de l'I.H.P. Probabilités et statistiques

We present a new pruning procedure on discrete trees by adding marks on the nodes of trees. This procedure allows us to construct and study a tree-valued Markov process { 𝒢 ( u ) } by pruning Galton–Watson trees and an analogous process { 𝒢 * ( u ) } by pruning a critical or subcritical Galton–Watson tree conditioned to be infinite. Under a mild condition on offspring distributions, we show that the process { 𝒢 ( u ) } run until its ascension time has a representation in terms of { 𝒢 * ( u ) } . A similar result was obtained by Aldous and...

Quenched law of large numbers for branching brownian motion in a random medium

János Engländer (2008)

Annales de l'I.H.P. Probabilités et statistiques

We study a spatial branching model, where the underlying motion is d-dimensional (d≥1) brownian motion and the branching rate is affected by a random collection of reproduction suppressing sets dubbed mild obstacles. The main result of this paper is the quenched law of large numbers for the population for all d≥1. We also show that the branching brownian motion with mild obstacles spreads less quickly than ordinary branching brownian motion by giving an upper estimate on its speed. When the underlying...

Random coefficients bifurcating autoregressive processes

Benoîte de Saporta, Anne Gégout-Petit, Laurence Marsalle (2014)

ESAIM: Probability and Statistics

This paper presents a new model of asymmetric bifurcating autoregressive process with random coefficients. We couple this model with a Galton−Watson tree to take into account possibly missing observations. We propose least-squares estimators for the various parameters of the model and prove their consistency, with a convergence rate, and asymptotic normality. We use both the bifurcating Markov chain and martingale approaches and derive new results in both these frameworks.

Random real trees

Jean-François Le Gall (2006)

Annales de la faculté des sciences de Toulouse Mathématiques

We survey recent developments about random real trees, whose prototype is the Continuum Random Tree (CRT) introduced by Aldous in 1991. We briefly explain the formalism of real trees, which yields a neat presentation of the theory and in particular of the relations between discrete Galton-Watson trees and continuous random trees. We then discuss the particular class of self-similar random real trees called stable trees, which generalize the CRT. We review several important results concerning stable...

Currently displaying 181 – 200 of 298