Displaying 121 – 140 of 298

Showing per page

Limit laws of transient excited random walks on integers

Elena Kosygina, Thomas Mountford (2011)

Annales de l'I.H.P. Probabilités et statistiques

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, δ, is larger than 1 then ERW is transient to the right and, moreover, for δ>4 under the averaged measure it obeys the Central Limit Theorem. We show that when δ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited random...

Limit Theorems for Non-Critical Branching Processes with Continuous State Space

Kurbanov, S. (2008)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.In the paper a modification of the branching stochastic process with immigration and with continuous states introduced by Adke S. R. and Gadag V. G. (1995) is considered. Limit theorems for the non-critical processes with or without non-stationary immigration and finite variance are proved. The subcritical case is illustrated with examples.

Limit Theorems for Regenerative Excursion Processes

Mitov, Kosto (1999)

Serdica Mathematical Journal

This work is supported by Bulgarian NFSI, grant No. MM–704/97The regenerative excursion process Z(t), t = 0, 1, 2, . . . is constructed by two independent sequences X = {Xi , i ≥ 1} and Z = {Ti , (Zi (t), 0 ≤ t < Ti ), i ≥ 1}. For the embedded alternating renewal process, with interarrival times Xi – the time for the installation and Ti – the time for the work, are proved some limit theorems for the spent worktime and the residual worktime, when at least one of the means of Xi and Ti is infinite. ...

Currently displaying 121 – 140 of 298