Previous Page 2

Displaying 21 – 33 of 33

Showing per page

On testing of general random closed set model hypothesis

Tomáš Mrkvička (2009)

Kybernetika

A new method of testing the random closed set model hypothesis (for example: the Boolean model hypothesis) for a stationary random closed set Ξ d with values in the extended convex ring is introduced. The method is based on the summary statistics – normalized intrinsic volumes densities of the ε -parallel sets to Ξ . The estimated summary statistics are compared with theirs envelopes produced from simulations of the model given by the tested hypothesis. The p-level of the test is then computed via approximation...

On the adaptive wavelet estimation of a multidimensional regression function under α -mixing dependence: Beyond the standard assumptions on the noise

Christophe Chesneau (2013)

Commentationes Mathematicae Universitatis Carolinae

We investigate the estimation of a multidimensional regression function f from n observations of an α -mixing process ( Y , X ) , where Y = f ( X ) + ξ , X represents the design and ξ the noise. We concentrate on wavelet methods. In most papers considering this problem, either the proposed wavelet estimator is not adaptive (i.e., it depends on the knowledge of the smoothness of f in its construction) or it is supposed that ξ is bounded or/and has a known distribution. In this paper, we go far beyond this classical framework....

On the asymptotic properties of a simple estimate of the Mode

Christophe Abraham, Gérard Biau, Benoît Cadre (2004)

ESAIM: Probability and Statistics

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate f n drawn from a sample X 1 , , X n . The estimate θ n is defined as any x in { X 1 , , X n } such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θ n behaves asymptotically as any maximizer θ ^ n of f n . More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θ n follows without further work.

On the asymptotic properties of a simple estimate of the Mode

Christophe Abraham, Gérard Biau, Benoît Cadre (2010)

ESAIM: Probability and Statistics

We consider an estimate of the mode θ of a multivariate probability density f with support in d using a kernel estimate fn drawn from a sample X1,...,Xn. The estimate θn is defined as any x in {X1,...,Xn} such that f n ( x ) = max i = 1 , , n f n ( X i ) . It is shown that θn behaves asymptotically as any maximizer θ ^ n of fn. More precisely, we prove that for any sequence ( r n ) n 1 of positive real numbers such that r n and r n d log n / n 0 , one has r n θ n - θ ^ n 0 in probability. The asymptotic normality of θn follows without further work.

On the continuity of invariant statistics

Nguyen Van Ho (1978)

Aplikace matematiky

The aim of this paper is to establish theorems on the absolute continuity of translation as well as scale invariant statistics in general, from which the related results by Hodges-Lehmann and Puri-Sen follow. The continuity relations between the joint cdf of a random vector and its marginal cdf's are also considered.

On the law of large numbers for continuous-time martingales and applications to statistics.

Hung T. Nguyen, Tuan D. Pham (1982)

Stochastica

In order to develop a general criterion for proving strong consistency of estimators in Statistics of stochastic processes, we study an extension, to the continuous-time case, of the strong law of large numbers for discrete time square integrable martingales (e.g. Neveu, 1965, 1972). Applications to estimation in diffusion models are given.

On the Optimality of Sample-Based Estimates of the Expectation of the Empirical Minimizer***

Peter L. Bartlett, Shahar Mendelson, Petra Philips (2010)

ESAIM: Probability and Statistics

We study sample-based estimates of the expectation of the function produced by the empirical minimization algorithm. We investigate the extent to which one can estimate the rate of convergence of the empirical minimizer in a data dependent manner. We establish three main results. First, we provide an algorithm that upper bounds the expectation of the empirical minimizer in a completely data-dependent manner. This bound is based on a structural result due to Bartlett and Mendelson, which relates...

One Bootstrap suffices to generate sharp uniform bounds in functional estimation

Paul Deheuvels (2011)

Kybernetika

We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set 𝐈 , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general...

On-line nonparametric estimation.

Rafail Khasminskii (2004)

SORT

A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.

Optimal estimators in learning theory

V. N. Temlyakov (2006)

Banach Center Publications

This paper is a survey of recent results on some problems of supervised learning in the setting formulated by Cucker and Smale. Supervised learning, or learning-from-examples, refers to a process that builds on the base of available data of inputs x i and outputs y i , i = 1,...,m, a function that best represents the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y. The goal is to find an estimator f z on the base of given data z : = ( ( x , y ) , . . . , ( x m , y m ) ) that approximates well the regression function f ρ of...

Optimal nonlinear transformations of random variables

Aldo Goia, Ernesto Salinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....

Currently displaying 21 – 33 of 33

Previous Page 2