Testing Whether F is More IFR than G .
In this paper we, firstly, present a recursive formula of the empirical estimator of the semi-Markov kernel. Then a non-parametric estimator of the expected cumulative operational time for semi-Markov systems is proposed. The asymptotic properties of this estimator, as the uniform strongly consistency and normality are given. As an illustration example, we give a numerical application.
Let be the mode of a probability density and its kernel estimator. In the case is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for . Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the norms, , of ....
Let θ be the mode of a probability density and θn its kernel estimator. In the case θ is nondegenerate, we first specify the weak convergence rate of the multivariate kernel mode estimator by stating the central limit theorem for θn - θ. Then, we obtain a multivariate law of the iterated logarithm for the kernel mode estimator by proving that, with probability one, the limit set of the sequence θn - θ suitably normalized is an ellipsoid. We also give a law of the iterated logarithm for the...
This paper deals with the likelihood ratio test (LRT) for testing hypotheses on the mixing measure in mixture models with or without structural parameter. The main result gives the asymptotic distribution of the LRT statistics under some conditions that are proved to be almost necessary. A detailed solution is given for two testing problems: the test of a single distribution against any mixture, with application to Gaussian, Poisson and binomial distributions; the test of the number of populations...
We suggest a nonparametric version of the probability weighted empirical characteristic function (PWECF) introduced by Meintanis et al. [10] and use this PWECF in order to estimate the parameters of arbitrary transformations to symmetry. The almost sure consistency of the resulting estimators is shown. Finite-sample results for i.i.d. data are presented and are subsequently extended to the regression setting. A real data illustration is also included.
Simple rank statistics are used to test that two samples come from the same distribution. Šidák’s -test (Apl. Mat. 22 (1977), 166–175) is based on the number of observations from one sample that exceed all observations from the other sample. A similar test statistic is defined in Ann. Inst. Stat. Math. 52 (1970), 255–266. We study asymptotic behavior of the moments of both statistics.
We consider the high order moments estimator of the frontier of a random pair, introduced by [S. Girard, A. Guillou and G. Stupfler, J. Multivariate Anal. 116 (2013) 172–189]. In the present paper, we show that this estimator is strongly uniformly consistent on compact sets and its rate of convergence is given when the conditional cumulative distribution function belongs to the Hall class of distribution functions.
In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of estimates based...
In many practical situations sample sizes are not sufficiently large and estimators based on such samples may not be satisfactory in terms of their variances. At the same time it is not unusual that some auxiliary information about the parameters of interest is available. This paper considers a method of using auxiliary information for improving properties of the estimators based on a current sample only. In particular, it is assumed that the information is available as a number of estimates based...
We consider a fixed-design regression model with long-range dependent errors which form a moving average or Gaussian process. We introduce an artificial randomization of grid points at which observations are taken in order to diminish the impact of strong dependence. We estimate the variance of the errors using the Rice estimator. The estimator is shown to exhibit weak (i.e. in probability) consistency. Simulation results confirm this property for moderate and large sample sizes when randomization...
This paper deals with variable selection in regression and binary classification frameworks. It proposes an automatic and exhaustive procedure which relies on the use of the CART algorithm and on model selection via penalization. This work, of theoretical nature, aims at determining adequate penalties, i.e. penalties which allow achievement of oracle type inequalities justifying the performance of the proposed procedure. Since the exhaustive procedure cannot be realized when the number of variables...
The problem of estimating an unknown variance function in a random design Gaussian heteroscedastic regression model is considered. Both the regression function and the logarithm of the variance function are modelled by piecewise polynomials. A finite collection of such parametric models based on a family of partitions of support of an explanatory variable is studied. Penalized model selection criteria as well as post-model-selection estimates are introduced based on Maximum Likelihood (ML) and Restricted...