The empirical distribution function for dependent variables: asymptotic and nonasymptotic results in
Considering the centered empirical distribution function Fn-F as a variable in , we derive non asymptotic upper bounds for the deviation of the -norms of Fn-F as well as central limit theorems for the empirical process indexed by the elements of generalized Sobolev balls. These results are valid for a large class of dependent sequences, including non-mixing processes and some dynamical systems.