Displaying 661 – 680 of 1021

Showing per page

Optimal mean-variance bounds on order statistics from families determined by star ordering

Tomasz Rychlik (2002)

Applicationes Mathematicae

We present optimal upper bounds for expectations of order statistics from i.i.d. samples with a common distribution function belonging to the restricted family of probability measures that either precede or follow a given one in the star ordering. The bounds for families with monotone failure density and rate on the average are specified. The results are obtained by projecting functions onto convex cones of Hilbert spaces.

Optimal model selection in density estimation

Matthieu Lerasle (2012)

Annales de l'I.H.P. Probabilités et statistiques

In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density s and the collection of models. We also study the slope heuristic,...

Optimal nonlinear transformations of random variables

Aldo Goia, Ernesto Salinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....

Optimal uncertainty quantification for legacy data observations of Lipschitz functions

T. J. Sullivan, M. McKerns, D. Meyer, F. Theil, H. Owhadi, M. Ortiz (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...

Ordenes de convergencia para las aproximaciones normal y bootstrap en estimación no paramétrica de la función de densidad.

Ricardo Cao Abad (1990)

Trabajos de Estadística

Este artículos concierne las distribuciones usadas para construir intervalos de confianza para la función de densidad en una situación no paramétrica. Se comparan los órdenes de convergencia para el límite normal, su aproximación "plug in" y el método bootstrap. Se deduce que el bootstrap se comporta mejor que las otras dos aproximaciones tanto en su forma clásica como con la aproximación bootstrap normal.

Order statistics and ( r , s ) -entropy measures

María Dolores Esteban, Domingo Morales, Leandro Pardo, María Luisa Menéndez (1994)

Applications of Mathematics

K. M. Wong and S. Chen [9] analyzed the Shannon entropy of a sequence of random variables under order restrictions. Using ( r , s ) -entropies, I. J. Taneja [8], these results are generalized. Upper and lower bounds to the entropy reduction when the sequence is ordered and conditions under which they are achieved are derived. Theorems are presented showing the difference between the average entropy of the individual order statistics and the entropy of a member of the original independent identically distributed...

Orthogonal series estimation of band-limited regression functions

Waldemar Popiński (2014)

Applicationes Mathematicae

The problem of nonparametric function fitting using the complete orthogonal system of Whittaker cardinal functions s k , k = 0,±1,..., for the observation model y j = f ( u j ) + η j , j = 1,...,n, is considered, where f ∈ L²(ℝ) ∩ BL(Ω) for Ω > 0 is a band-limited function, u j are independent random variables uniformly distributed in the observation interval [-T,T], η j are uncorrelated or correlated random variables with zero mean value and finite variance, independent of the observation points. Conditions for convergence...

Orthogonal series regression estimation under long-range dependent errors

Waldemar Popiński (2001)

Applicationes Mathematicae

This paper is concerned with general conditions for convergence rates of nonparametric orthogonal series estimators of the regression function. The estimators are obtained by the least squares method on the basis of an observation sample Y i = f ( X i ) + η i , i=1,...,n, where X i A d are independently chosen from a distribution with density ϱ ∈ L¹(A) and η i are zero mean stationary errors with long-range dependence. Convergence rates of the error n - 1 i = 1 n ( f ( X i ) - f ̂ N ( X i ) ) ² for the estimator f ̂ N ( x ) = k = 1 N c ̂ k e k ( x ) , constructed using an orthonormal system e k , k=1,2,...,...

Orthogonal series regression estimators for an irregularly spaced design

Waldemar Popiński (2000)

Applicationes Mathematicae

Nonparametric orthogonal series regression function estimation is investigated in the case of a fixed point design where the observation points are irregularly spaced in a finite interval [a,b]i ⊂ ℝ. Convergence rates for the integrated mean-square error and pointwise mean-square error are obtained in the case of estimators constructed using the Legendre polynomials and Haar functions for regression functions satisfying the Lipschitz condition.

Parameter estimation of S-distributions with alternating regression.

I-Chun Chou, Harald Martens, Eberhard O. Voit (2007)

SORT

We propose a novel 3-way alternating regression (3-AR) method as an effective strategy for the estimation of parameter values in S-distributions from frequency data. The 3-AR algorithm is very fast and performs well for error-free distributions and artificial noisy data obtained as random samples generated from S-distributions, as well as for traditional statistical distributions and for actual observation data. In rare cases where the algorithm does not immediately converge, its enormous speed...

Partition-based conditional density estimation

S. X. Cohen, E. Le Pennec (2013)

ESAIM: Probability and Statistics

We propose a general partition-based strategy to estimate conditional density with candidate densities that are piecewise constant with respect to the covariate. Capitalizing on a general penalized maximum likelihood model selection result, we prove, on two specific examples, that the penalty of each model can be chosen roughly proportional to its dimension. We first study a classical strategy in which the densities are chosen piecewise conditional according to the variable. We then consider Gaussian...

Penalization versus Goldenshluger − Lepski strategies in warped bases regression

Gaëlle Chagny (2013)

ESAIM: Probability and Statistics

This paper deals with the problem of estimating a regression function f, in a random design framework. We build and study two adaptive estimators based on model selection, applied with warped bases. We start with a collection of finite dimensional linear spaces, spanned by orthonormal bases. Instead of expanding directly the target function f on these bases, we rather consider the expansion of h = f ∘ G-1, where G is the cumulative distribution function of the design, following Kerkyacharian and...

Penalized estimators for non linear inverse problems

Jean-Michel Loubes, Carenne Ludeña (2010)

ESAIM: Probability and Statistics

In this article we tackle the problem of inverse non linear ill-posed problems from a statistical point of view. We discuss the problem of estimating an indirectly observed function, without prior knowledge of its regularity, based on noisy observations. For this we consider two approaches: one based on the Tikhonov regularization procedure, and another one based on model selection methods for both ordered and non ordered subsets. In each case we prove consistency of the estimators and show...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2011)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penalized nonparametric drift estimation for a continuously observed one-dimensional diffusion process

Eva Löcherbach, Dasha Loukianova, Oleg Loukianov (2012)

ESAIM: Probability and Statistics

Let X be a one dimensional positive recurrent diffusion continuously observed on [0,t] . We consider a non parametric estimator of the drift function on a given interval. Our estimator, obtained using a penalized least square approach, belongs to a finite dimensional functional space, whose dimension is selected according to the data. The non-asymptotic risk-bound reaches the minimax optimal rate of convergence when t → ∞. The main point of our work is that we do not suppose the process to be in...

Penultimate approximation for the distribution of the excesses

Rym Worms (2002)

ESAIM: Probability and Statistics

Let F be a distribution function (d.f) in the domain of attraction of an extreme value distribution H γ ; it is well-known that F u ( x ) , where F u is the d.f of the excesses over u , converges, when u tends to s + ( F ) , the end-point of F , to G γ ( x σ ( u ) ) , where G γ is the d.f. of the Generalized Pareto Distribution. We provide conditions that ensure that there exists, for γ > - 1 , a function Λ which verifies lim u s + ( F ) Λ ( u ) = γ and is such that Δ ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ Λ ( u ) ( x / σ ( u ) ) | converges to 0 faster than d ( u ) = sup x [ 0 , s + ( F ) - u [ | F ¯ u ( x ) - G ¯ γ ( x / σ ( u ) ) | .

Currently displaying 661 – 680 of 1021