The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 101 –
120 of
125
In Bivariate Frequency Analysis (BFA) of hydrological events, the study and quantification of the dependence between several variables of interest is commonly carried out through Pearson’s correlation (r), Kendall’s tau (τ) or Spearman’s rho (ρ). These measures provide an overall evaluation of the dependence. However, in BFA, the focus is on the extreme events which occur on the tail of the distribution. Therefore, these measures are not appropriate to quantify the dependence in the tail distribution....
In this paper we consider an autoregressive Pareto process which can be used as an alternative to heavy tailed MARMA. We focus on the tail behavior and prove that the tail empirical quantile function can be approximated by a Gaussian process. This result allows to derive a class of consistent and asymptotically normal estimators for the shape parameter. We will see through simulation that the usual estimation procedure based on an i.i.d. setting may fall short of the desired precision.
We discuss two families of tests for normality based on characterizations of continuous distributions via order statistics and record values. Simulations of their powers show that they are competitive to widely recommended tests in the literature.
This paper is concerned with the properties of two statistics based on the logarithms of disjoint m-spacings. The asymptotic normality is established in an elementary way and exact and asymptotic means and variances are computed in the case of uniform distribution on the interval [0,1]. This result is generalized to the case when the sample is drawn from a distribution with positive step density on [0,1]. Bahadur approximate efficiency of tests based on those statistics is found for such alternatives....
The theory of copulas provides a useful tool for modelling dependence in risk management. The goal of this paper is to describe the tail behaviour of bivariate copulas and its role in modelling extreme events. We say that a bivariate copula has a uniform lower tail expansion if near the origin it can be approximated by a homogeneous function L(u,v) of degree 1; and it is said to have a uniform upper tail expansion if the associated survival copula has a lower tail expansion. In this paper we (1)...
The theory of copulas provides a useful tool for modeling dependence in risk management. In insurance and finance, as well as in other applications, dependence of extreme events is particularly important, hence there is a need for a detailed study of the tail behaviour of multivariate copulas. We investigate the class of copulas having regular tails with a uniform expansion. We present several equivalent characterizations of uniform tail expansions. Next, basing on them, we determine the class of...
We consider, in the framework of multidimensional observations, nonparametric functional estimators, which include, as special cases, the Akaike–Parzen–Rosenblatt kernel density estimators ([1, 18, 20]), and the Nadaraya–Watson kernel regression estimators ([16, 22]). We evaluate the sup-norm, over a given set , of the difference between the estimator and a non-random functional centering factor (which reduces to the estimator mean for kernel density estimation). We show that, under suitable general...
A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic 'signal plus Gaussian white noise' model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described.
"A high quantile is a quantile of order q with q close to one." A precise constructive definition of high quantiles is given and optimal estimates are presented.
This paper is a survey of recent results on some problems of supervised learning in the setting formulated by Cucker and Smale. Supervised learning, or learning-from-examples, refers to a process that builds on the base of available data of inputs and outputs , i = 1,...,m, a function that best represents the relation between the inputs x ∈ X and the corresponding outputs y ∈ Y. The goal is to find an estimator on the base of given data that approximates well the regression function of...
We present optimal upper bounds for expectations of order statistics from i.i.d. samples with a common distribution function belonging to the restricted family of probability measures that either precede or follow a given one in the star ordering. The bounds for families with monotone failure density and rate on the average are specified. The results are obtained by projecting functions onto convex cones of Hilbert spaces.
In order to calibrate a penalization procedure for model selection, the statistician has to choose a shape for the penalty and a leading constant. In this paper, we study, for the marginal density estimation problem, the resampling penalties as general estimators of the shape of an ideal penalty. We prove that the selected estimator satisfies sharp oracle inequalities without remainder terms under a few assumptions on the marginal density and the collection of models. We also study the slope heuristic,...
In this paper we deepen the study of the nonlinear principal components introduced by Salinelli in 1998, referring to a real random variable. New insights on their probabilistic and statistical meaning are given with some properties. An estimation procedure based on spline functions, adapting to a statistical framework the classical Rayleigh–Ritz method, is introduced. Asymptotic properties of the estimator are proved, providing an upper bound for the rate of convergence under suitable mild conditions....
We consider the problem of providing optimal uncertainty quantification (UQ) – and hence rigorous certification – for partially-observed functions. We present a UQ framework within which the observations may be small or large in number, and need not carry information about the probability distribution of the system in operation. The UQ objectives are posed as optimization problems, the solutions of which are optimal bounds on the quantities of interest; we consider two typical settings, namely parameter...
Este artículos concierne las distribuciones usadas para construir intervalos de confianza para la función de densidad en una situación no paramétrica. Se comparan los órdenes de convergencia para el límite normal, su aproximación "plug in" y el método bootstrap. Se deduce que el bootstrap se comporta mejor que las otras dos aproximaciones tanto en su forma clásica como con la aproximación bootstrap normal.
Currently displaying 101 –
120 of
125