The search session has expired. Please query the service again.
Displaying 21 –
40 of
227
We extend the classical empirical interpolation method [M. Barrault, Y. Maday, N.C. Nguyen and A.T. Patera, An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. Compt. Rend. Math. Anal. Num. 339 (2004) 667–672] to a weighted empirical interpolation method in order to approximate nonlinear parametric functions with weighted parameters, e.g. random variables obeying various probability distributions. A priori convergence analysis...
The reduced basis method is a model reduction technique yielding substantial savings of computational time when a solution to a parametrized equation has to be computed for many values of the parameter. Certification of the approximation is possible by means of an a posteriori error bound. Under appropriate assumptions, this error bound is computed with an algorithm of complexity independent of the size of the full problem. In practice, the evaluation of the error bound can become very sensitive...
We present an algorithm to generate a smooth curve interpolating a set of data on an -dimensional ellipsoid, which is given in closed form. This is inspired by an algorithm based on a rolling and wrapping technique, described in [11] for data on a general manifold embedded in Euclidean space. Since the ellipsoid can be embedded in an Euclidean space, this algorithm can be implemented, at least theoretically. However, one of the basic steps of that algorithm consists in rolling the ellipsoid, over...
The paper deals with the computation of suitably chosen parameters of a biparabolic spline (ot the tensor product type) on a rectangular domain. Some possibilities of choosing such local parameters (concentrated, dispersed parameters) are discussed. The algorithms for computation of dispersed parameters (using the first derivative representation) and concentraced parameters (using the second derivative representation) are given. Both these algorithms repeatedly use the one-dimensional algorithms....
We develop a new technique which, for the given smooth function, generates the anisotropic triangular grid and the corresponding polynomial approximation degrees based on the minimization of the interpolation error in the broken -seminorm. This technique can be employed for the numerical solution of boundary value problems with the aid of finite element methods. We present the theoretical background of this approach and show several numerical examples demonstrating the efficiency of the proposed...
We prove anisotropic interpolation error estimates for quadrilateral and hexahedral elements with all possible shape function spaces, which cover the intermediate families, tensor product families and serendipity families. Moreover, we show that the anisotropic interpolation error estimates hold for derivatives of any order. This goal is accomplished by investigating an interpolation defined via orthogonal expansions.
Se estudia la aproximación en el espacio de planos. Se introduce una medida de la distancia en este espacio, con la que pueden resolverse problemas de modelado con superficies desarrollables mediante algoritmos de aproximación de curvas. Además, el reconocimiento y reconstrucción de caras planas en nubes de puntos aparecen como un problema "clustering" en el espacio de planos. La aplicabilidad práctica de estos resultados se muestra en varios ejemplos.
Currently displaying 21 –
40 of
227