Die Interpolation durch Bernoulli'sche Funktionen
Alfred Tauber (1932)
Aktuárské vědy
Thomas Sonar (2005)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.
Thomas Sonar (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp.37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.
P.H. Astor, C.S. Duris (1974)
Numerische Mathematik
Raj Kishor Singh (1971)
Czechoslovak Mathematical Journal
A. Agouzal, K. Lipnikov, Yu. Vassilevsk (2010)
Mathematical Modelling of Natural Phenomena
We present a new method for generating a d-dimensional simplicial mesh that minimizes the Lp-norm, p > 0, of the interpolation error or its gradient. The method uses edge-based error estimates to build a tensor metric. We describe and analyze the basic steps of our method
R. KRESS (1970/1971)
Numerische Mathematik
H. Arndt (1980/1981)
Numerische Mathematik
K. Scherer, H. Esser (1973)
Numerische Mathematik
H. Werner (1971/1972)
Numerische Mathematik
K. Kansy (1973)
Numerische Mathematik
Jean-Paul Berrut (1987)
Numerische Mathematik
Jiří Kobza (1992)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Kenta Kobayashi, Takuya Tsuchiya (2024)
Applications of Mathematics
In an error estimation of finite element solutions to the Poisson equation, we usually impose the shape regularity assumption on the meshes to be used. In this paper, we show that even if the shape regularity condition is violated, the standard error estimation can be obtained if ``bad'' elements that violate the shape regularity or maximum angle condition are covered virtually by simplices that satisfy the minimum angle condition. A numerical experiment illustrates the theoretical result.
J. H. Bramble, A. H. Schatz (1976)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
J.L. Gout (1977)
Numerische Mathematik
Pierre Jamet (1976)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Kenta Kobayashi, Takuya Tsuchiya (2016)
Applications of Mathematics
We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed...
Baglama, J., Calvetti, D., Reichel, L. (1998)
ETNA. Electronic Transactions on Numerical Analysis [electronic only]
C. Fefferman (2009)
Revista Matemática Iberoamericana