Geometric Convergence of Rational Approximations to e-z in Infinite Sectors.
Given information about a harmonic function in two variables, consisting of a finite number of values of its Radon projections, i.e., integrals along some chords of the unit circle, we study the problem of interpolating these data by a harmonic polynomial. With the help of symbolic summation techniques we show that this interpolation problem has a unique solution in the case when the chords form a regular polygon. Numerical experiments for this and more general cases are presented.
Se considera la interpolación de Hermite de funciones de una variable mediante polinomios generalizados. Se pretende mostrar que técnicas computacionales conocidas para interpolación polinómica se pueden aplicar también a interpolación mediante polinomios generalizados. Como aplicación se estudia con cierto detalle la interpolación mediante funciones racionales con polos prefijados. La interpolación polinómica corresponde al caso particular en que todos los polos prefijados están en el infinito.
This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being...
The paper suggests a generalization of widely used Holt-Winters smoothing and forecasting method for seasonal time series. The general concept of seasonality modeling is introduced both for the additive and multiplicative case. Several special cases are discussed, including a linear interpolation of seasonal indices and a usage of trigonometric functions. Both methods are fully applicable for time series with irregularly observed data (just the special case of missing observations was covered up...
We present a simple and effective scheme for forming iterative methods of various convergence orders. In this scheme, methods of various convergence orders, such as four, six, eight and ten, are formed through a modest modification of the classical Newton method. Since the scheme considered is a simple modification of the Newton method, it can be easily implemented in existing software packages, which is also suggested by the presented pseudocodes. Finally some problems are solved, to very high...
We discuss possible algorithms for interpolating data given in a set of curves and/or points in the plane. We propose a set of basic assumptions to be satisfied by the interpolation algorithms which lead to a set of models in terms of possibly degenerate elliptic partial differential equations. The Absolute Minimal Lipschitz Extension model (AMLE) is singled out and studied in more detail. We show experiments suggesting a possible application, the restoration of images with poor dynamic range. We...