Displaying 421 – 440 of 839

Showing per page

Métodos duales y algoritmos híbridos para problemas de "set partitioning".

Jaime Barceló Bugeda, Elena Fernández Areizaga (1990)

Trabajos de Investigación Operativa

En este artículo estudiamos la utilización de métodos duales en el diseño de algoritmos híbridos para la resolución de problemas de "Set Partitioning" (SP). Las técnicas duales resultan de gran interés para resolver problemas con estructura combinatoria no sólo porque generan cotas inferiores sino porque, además, su utilización junto con heurísticas y procedimientos de generación de desigualdades en el diseño de algoritmos híbridos permite evaluar la calidad de las cotas superiores obtenidas. Los...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Minimal invasion: An optimal L∞ state constraint problem

Christian Clason, Kazufumi Ito, Karl Kunisch (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the least pointwise upper and/or lower bounds on the state variable on a specified subdomain of a control system under piecewise constant control action are sought. This results in a non-smooth optimization problem in function spaces. Introducing a Moreau-Yosida regularization of the state constraints, the problem can be solved using a superlinearly convergent semi-smooth Newton method. Optimality conditions are derived, convergence of the Moreau-Yosida regularization is proved, and...

Minimax optimal control problems. Numerical analysis of the finite horizon case

Silvia C. Di Marco, Roberto L.V. González (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider the numerical computation of the optimal cost function associated to the problem that consists in finding the minimum of the maximum of a scalar functional on a trajectory. We present an approximation method for the numerical solution which employs both discretization on time and on spatial variables. In this way, we obtain a fully discrete problem that has unique solution. We give an optimal estimate for the error between the approximated solution and the optimal cost function...

Minimización global de un polinomio en la recta real.

César Beltrán Royo (1999)

Qüestiió

En este artículo presentamos y probamos numéricamente un nuevo algoritmo para la minimización global de un polinomio de grado par. El algoritmo está basado en la simple idea de trasladar verticalmente el grafo del polinomio hasta que el eje OX sea tangente al grafo del polinomio trasladado. En esta privilegiada posición, cualquier raíz real del polinomio trasladado es un mínimo global del polinomio original.

Minimization of a convex quadratic function subject to separable conical constraints in granular dynamics

Pospíšil, Lukáš, Dostál, Zdeněk (2015)

Programs and Algorithms of Numerical Mathematics

The numerical solution of granular dynamics problems with Coulomb friction leads to the problem of minimizing a convex quadratic function with semidefinite Hessian subject to a separable conical constraints. In this paper, we are interested in the numerical solution of this problem. We suggest a modification of an active-set optimal quadratic programming algorithm. The number of projection steps is decreased by using a projected Barzilai-Borwein method. In the numerical experiment, we compare our...

Mixed formulation of elliptic variational inequalities and its approximation

Jaroslav Haslinger (1981)

Aplikace matematiky

The approximation of a mixed formulation of elliptic variational inequalities is studied. Mixed formulation is defined as the problem of finding a saddle-point of a properly chosen Lagrangian 2 on a certain convex set K x Λ . Sufficient conditions, guaranteeing the convergence of approximate solutions are studied. Abstract results are applied to concrete examples.

Mixed formulations for a class of variational inequalities

Leila Slimane, Abderrahmane Bendali, Patrick Laborde (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...

Mixed formulations for a class of variational inequalities

Leila Slimane, Abderrahmane Bendali, Patrick Laborde (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

A general setting is proposed for the mixed finite element approximations of elliptic differential problems involving a unilateral boundary condition. The treatment covers the Signorini problem as well as the unilateral contact problem with or without friction. Existence, uniqueness for both the continuous and the discrete problem as well as error estimates are established in a general framework. As an application, the approximation of the Signorini problem by the lowest order mixed finite element...

Modelling and control in pseudoplate problem with discontinuous thickness

Ján Lovíšek (2009)

Applications of Mathematics

This paper concerns an obstacle control problem for an elastic (homogeneous) and isotropic) pseudoplate. The state problem is modelled by a coercive variational inequality, where control variable enters the coefficients of the linear operator. Here, the role of control variable is played by the thickness of the pseudoplate which need not belong to the set of continuous functions. Since in general problems of control in coefficients have no optimal solution, a class of the extended optimal control...

Currently displaying 421 – 440 of 839