Displaying 21 – 40 of 157

Showing per page

An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations

Yves Frederix, Giovanni Samaey, Dirk Roose (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider multiscale systems for which only a fine-scale model describing the evolution of individuals (atoms, molecules, bacteria, agents) is given, while we are interested in the evolution of the population density on coarse space and time scales. Typically, this evolution is described by a coarse Fokker-Planck equation. In this paper, we consider a numerical procedure to compute the solution of this Fokker-Planck equation directly on the coarse level, based on the estimation of the unknown...

An analysis of noise propagation in the multiscale simulation of coarse Fokker-Planck equations

Yves Frederix, Giovanni Samaey, Dirk Roose (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider multiscale systems for which only a fine-scale model describing the evolution of individuals (atoms, molecules, bacteria, agents) is given, while we are interested in the evolution of the population density on coarse space and time scales. Typically, this evolution is described by a coarse Fokker-Planck equation. In this paper, we consider a numerical procedure to compute the solution of this Fokker-Planck equation directly on the coarse level, based on the estimation of the unknown...

An analytic proof of numerical stability of Gaussian collocation for delay differential

Nicola Guglielmi (2000)

Bollettino dell'Unione Matematica Italiana

In questo articolo si investigano le proprietà di stabilità asintotica dei metodi numerici per equazioni differenziali con ritardo, prendendo in esame l'equazione test: U t = a U t + b U t - τ dove a , b R , τ > 0 e g t è una funzione a valori reali e continua. In particolare, viene analizzata la dipendenza dal ritardo della stabilità numerica dei metodi di collocazione Gaussiana. Nel recente lavoro [GH99], la stabilità di questi metodi è stata dimostrata facendo uso di un approccio geometrico, basato sul legame tra la proprietà...

An unconditionally positive and global stability preserving NSFD scheme for an epidemic model with vaccination

Deqiong Ding, Qiang Ma, Xiaohua Ding (2014)

International Journal of Applied Mathematics and Computer Science

In this paper, a NonStandard Finite Difference (NSFD) scheme is constructed, which can be used to determine numerical solutions for an epidemic model with vaccination. Here the NSFD method is employed to derive a set of difference equations for the epidemic model with vaccination. We show that difference equations have the same dynamics as the original differential system, such as the positivity of the solutions and the stability of the equilibria, without being restricted by the time step. Our...

Analysis of the accuracy and convergence of equation-free projection to a slow manifold

Antonios Zagaris, C. William Gear, Tasso J. Kaper, Yannis G. Kevrekidis (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

In [C.W. Gear, T.J. Kaper, I.G. Kevrekidis and A. Zagaris, SIAM J. Appl. Dyn. Syst. 4 (2005) 711–732], we developed a class of iterative algorithms within the context of equation-free methods to approximate low-dimensional, attracting, slow manifolds in systems of differential equations with multiple time scales. For user-specified values of a finite number of the observables, the mth member of the class of algorithms ( m = 0 , 1 , ... ) finds iteratively an approximation of the appropriate zero of the (m+1)st...

Boundary value problems for systems of functional differential equations

Tadeusz Jankowski (2002)

Applications of Mathematics

Algorithms for finding an approximate solution of boundary value problems for systems of functional ordinary differential equations are studied. Sufficient conditions for consistency and convergence of these methods are given. In the last section, a construction of methods of arbitrary order is presented.

Construction of explicit and generalized Runge-Kutta formulas of arbitrary order with rational parameters

Anton Huťa, Karl Strehmel (1982)

Aplikace matematiky

In the article containing the algorithm of explicit generalized Runge-Kutta formulas of arbitrary order with rational parameters two problems occuring in the solution of ordinary differential equaitions are investigated, namely the determination of rational coefficients and the derivation of the adaptive Runge-Kutta method. By introducing suitable substitutions into the nonlinear system of condition equations one obtains a system of linear equations, which has rational roots. The introduction of...

Delay-dependent stability of linear multi-step methods for linear neutral systems

Guang-Da Hu, Lizhen Shao (2020)

Kybernetika

In this paper, we are concerned with numerical methods for linear neutral systems with multiple delays. For delay-dependently stable neutral systems, we ask what conditions must be imposed on linear multi-step methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. Combining with Lagrange interpolation, linear multi-step methods can be applied to the neutral systems. Utilizing the argument principle, a sufficient condition is derived...

Delay-dependent stability of Runge-Kutta methods for linear neutral systems with multiple delays

Guang-Da Hu (2018)

Kybernetika

In this paper, we are concerned with stability of numerical methods for linear neutral systems with multiple delays. Delay-dependent stability of Runge-Kutta methods is investigated, i. e., for delay-dependently stable systems, we ask what conditions must be imposed on the Runge-Kutta methods in order that the numerical solutions display stability property analogous to that displayed by the exact solutions. By means of Lagrange interpolation, Runge-Kutta methods can be applied to neutral differential...

Currently displaying 21 – 40 of 157