Einige Stabilitätsungleichungen für gewöhnliche Differenzengleichungen in nichtkompakter Form.
This paper discusses analytical and numerical issues related to elliptic equations with random coefficients which are generally nonlinear functions of white noise. Singularity issues are avoided by using the Itô-Skorohod calculus to interpret the interactions between the coefficients and the solution. The solution is constructed by means of the Wiener Chaos (Cameron-Martin) expansions. The existence and uniqueness of the solutions are established under rather weak assumptions, the main of which...
We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and code. We...
We present a numerical algorithm to solve the micromagnetic equations based on tangential-plane minimization for the magnetization update and a homothethic-layer decomposition of outer space for the computation of the demagnetization field. As a first application, detailed results on the flower-vortex transition in the cube of Micromagnetic Standard Problem number 3 are obtained, which confirm, with a different method, those already present in the literature, and validate our method and...
We show that while Runge-Kutta methods cannot preserve polynomial invariants in general, they can preserve polynomials that are the energy invariant of canonical Hamiltonian systems.
We prove the existence of solutions to nonlinear parabolic problems of the following type: where is a strictly increasing function of class , the term is an operator of Leray-Lions type which satisfies the classical Leray-Lions assumptions of Musielak type, is a Carathéodory, noncoercive function which satisfies the following condition: for all , where is the Musielak complementary function of , and the second term belongs to .
For contractive interval functions we show that results from the iterative process after finitely many iterations if one uses the epsilon-inflated vector as input for instead of the original output vector . Applying Brouwer’s fixed point theorem, zeros of various mathematical problems can be verified in this way.