Page 1

Displaying 1 – 9 of 9

Showing per page

Genuinely multi-dimensional non-dissipative finite-volume schemes for transport

Bruno Després, Frédéric Lagoutière (2007)

International Journal of Applied Mathematics and Computer Science

We develop a new multidimensional finite-volume algorithm for transport equations. This algorithm is both stable and non-dissipative. It is based on a reconstruction of the discrete solution inside each cell at every time step. The proposed reconstruction, which is genuinely multidimensional, allows recovering sharp profiles in both the direction of the transport velocity and the transverse direction. It constitutes an extension of the one-dimensional reconstructions analyzed in (Lagoutière, 2005;...

Geometrical aspects of exact boundary controllability for the wave equation - a numerical study

M. Asch, G. Lebeau (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This essentially numerical study, sets out to investigate various geometrical properties of exact boundary controllability of the wave equation when the control is applied on a part of the boundary. Relationships between the geometry of the domain, the geometry of the controlled boundary, the time needed to control and the energy of the control are dealt with. A new norm of the control and an energetic cost factor are introduced. These quantities enable a detailed appraisal of the numerical solutions...

Global superconvergence of finite element methods for parabolic inverse problems

Hossein Azari, Shu Hua Zhang (2009)

Applications of Mathematics

In this article we transform a large class of parabolic inverse problems into a nonclassical parabolic equation whose coefficients consist of trace type functionals of the solution and its derivatives subject to some initial and boundary conditions. For this nonclassical problem, we study finite element methods and present an immediate analysis for global superconvergence for these problems, on basis of which we obtain a posteriori error estimators.

Godunov method for nonconservative hyperbolic systems

María Luz Muñoz-Ruiz, Carlos Parés (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...

Gradient descent and fast artificial time integration

Uri M. Ascher, Kees van den Doel, Hui Huang, Benar F. Svaiter (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theoretical and practical...

Currently displaying 1 – 9 of 9

Page 1