Page 1

Displaying 1 – 17 of 17

Showing per page

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h , the L surface concentrations c i s in lithology i of the sediments at the top...

Mathematical and numerical analysis of a stratigraphic model

Véronique Gervais, Roland Masson (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we consider a multi-lithology diffusion model used in stratigraphic modelling to simulate large scale transport processes of sediments described as a mixture of L lithologies. This model is a simplified one for which the surficial fluxes are proportional to the slope of the topography and to a lithology fraction with unitary diffusion coefficients. The main unknowns of the system are the sediment thickness h, the L surface concentrations c i s in lithology i of the sediments at the...

Mathematical and numerical studies of non linear ferromagnetic materials

Patrick Joly, Olivier Vacus (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we are interested in the numerical modeling of absorbing ferromagnetic materials obeying the non-linear Landau-Lifchitz-Gilbert law with respect to the propagation and scattering of electromagnetic waves. In this work we consider the 1D problem. We first show that the corresponding Cauchy problem has a unique global solution. We then derive a numerical scheme based on an appropriate modification of Yee's scheme, that we show to preserve some important properties of the continuous...

Mathematical models for laser-plasma interaction

Rémi Sentis (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical models for laser-plasma interaction

Rémi Sentis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We address here mathematical models related to the Laser-Plasma Interaction. After a simplified introduction to the physical background concerning the modelling of the laser propagation and its interaction with a plasma, we recall some classical results about the geometrical optics in plasmas. Then we deal with the well known paraxial approximation of the solution of the Maxwell equation; we state a coupling model between the plasma hydrodynamics and the laser propagation. Lastly, we consider the...

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...

Mathematical study of a petroleum-engineering scheme

Robert Eymard, Raphaèle Herbin, Anthony Michel (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Models of two phase flows in porous media, used in petroleum engineering, lead to a system of two coupled equations with elliptic and parabolic degenerate terms, and two unknowns, the saturation and the pressure. For the purpose of their approximation, a coupled scheme, consisting in a finite volume method together with a phase-by-phase upstream weighting scheme, is used in the industrial setting. This paper presents a mathematical analysis of this coupled scheme, first showing that it satisfies...

Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations

Nikolai Yu. Bakaev, Michel Crouzeix, Vidar Thomée (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assumed to be quasiuniform. In the present paper we show a resolvent estimate, in one and two space dimensions,...

Maximum-norm resolvent estimates for elliptic finite element operators on nonquasiuniform triangulations

Nikolai Yu. Bakaev, Michel Crouzeix, Vidar Thomée (2007)

ESAIM: Mathematical Modelling and Numerical Analysis


In recent years several papers have been devoted to stability and smoothing properties in maximum-norm of finite element discretizations of parabolic problems. Using the theory of analytic semigroups it has been possible to rephrase such properties as bounds for the resolvent of the associated discrete elliptic operator. In all these cases the triangulations of the spatial domain has been assumed to be quasiuniform. In the present paper we show a resolvent estimate, in one and two space dimensions, under...

Modelling the Impact of Pericyte Migration and Coverage of Vessels on the Efficacy of Vascular Disrupting Agents

S. R. McDougall, M. A.J. Chaplain, A. Stéphanou, A. R.A. Anderson (2010)

Mathematical Modelling of Natural Phenomena

Over the past decade or so, there have been a large number of modelling approaches aimed at elucidating the most important mechanisms affecting the formation of new capillaries from parent blood vessels — a process known as angiogenesis. Most studies have focussed upon the way in which capillary sprouts are initiated and migrate in response to diffusible chemical stimuli supplied by hypoxic stromal cells and leukocytes in the contexts of solid tumour...

Monotone (A,B) entropy stable numerical scheme for Scalar Conservation Laws with discontinuous flux

Adimurthi, Rajib Dutta, G. D. Veerappa Gowda, Jérôme Jaffré (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

For scalar conservation laws in one space dimension with a flux function discontinuous in space, there exist infinitely many classes of solutions which are L1 contractive. Each class is characterized by a connection (A,B) which determines the interface entropy. For solutions corresponding to a connection (A,B), there exists convergent numerical schemes based on Godunov or Engquist−Osher schemes. The natural question is how to obtain schemes, corresponding to computationally less expensive monotone...

Currently displaying 1 – 17 of 17

Page 1