Page 1

Displaying 1 – 9 of 9

Showing per page

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Galerkin approximation with proper orthogonal decomposition : new error estimates and illustrative examples

Dominique Chapelle, Asven Gariah, Jacques Sainte-Marie (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We propose a numerical analysis of proper orthogonal decomposition (POD) model reductions in which a priori error estimates are expressed in terms of the projection errors that are controlled in the construction of POD bases. These error estimates are derived for generic parabolic evolution PDEs, including with non-linear Lipschitz right-hand sides, and for wave-like equations. A specific projection continuity norm appears in the estimates and – whereas a general uniform continuity bound seems out...

Galerkin approximations for the linear parabolic equation with the third boundary condition

István Faragó, Sergey Korotov, Pekka Neittaanmäki (2003)

Applications of Mathematics

We solve a linear parabolic equation in d , d 1 , with the third nonhomogeneous boundary condition using the finite element method for discretization in space, and the θ -method for discretization in time. The convergence of both, the semidiscrete approximations and the fully discretized ones, is analysed. The proofs are based on a generalization of the idea of the elliptic projection. The rate of convergence is derived also for variable time step-sizes.

Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis, Charalambos Makridakis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

Galerkin time-stepping methods for nonlinear parabolic equations

Georgios Akrivis, Charalambos Makridakis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider discontinuous as well as continuous Galerkin methods for the time discretization of a class of nonlinear parabolic equations. We show existence and local uniqueness and derive optimal order optimal regularity a priori error estimates. We establish the results in an abstract Hilbert space setting and apply them to a quasilinear parabolic equation.

Gradient-free and gradient-based methods for shape optimization of water turbine blade

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Horníková, Hana, Michálková, Kristýna, Turnerová, Eva (2019)

Programs and Algorithms of Numerical Mathematics

The purpose of our work is to develop an automatic shape optimization tool for runner wheel blades in reaction water turbines, especially in Kaplan turbines. The fluid flow is simulated using an in-house incompressible turbulent flow solver based on recently introduced isogeometric analysis (see e.g. J. A. Cotrell et al.: Isogeometric Analysis: Toward Integration of CAD and FEA, Wiley, 2009). The proposed automatic shape optimization approach is based on a so-called hybrid optimization which combines...

Grid adjustment based on a posteriori error estimators

Karel Segeth (1993)

Applications of Mathematics

The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.

Currently displaying 1 – 9 of 9

Page 1