Page 1

Displaying 1 – 10 of 10

Showing per page

Recovery of an unknown flux in parabolic problems with nonstandard boundary conditions: Error estimates

Marián Slodička (2003)

Applications of Mathematics

In this paper, we consider a 2nd order semilinear parabolic initial boundary value problem (IBVP) on a bounded domain Ω N , with nonstandard boundary conditions (BCs). More precisely, at some part of the boundary we impose a Neumann BC containing an unknown additive space-constant α ( t ) , accompanied with a nonlocal (integral) Dirichlet side condition. We design a numerical scheme for the approximation of a weak solution to the IBVP and derive error estimates for the approximation of the solution u and...

Reduced basis method for finite volume approximations of parametrized linear evolution equations

Bernard Haasdonk, Mario Ohlberger (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

The model order reduction methodology of reduced basis (RB) techniques offers efficient treatment of parametrized partial differential equations (P2DEs) by providing both approximate solution procedures and efficient error estimates. RB-methods have so far mainly been applied to finite element schemes for elliptic and parabolic problems. In the current study we extend the methodology to general linear evolution schemes such as finite volume schemes for parabolic and hyperbolic evolution equations....

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ -scheme with 1 / 2 θ 1 . Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo 40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Robust a posteriori error estimates for finite element discretizations of the heat equation with discontinuous coefficients

Stefano Berrone (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work we derive a posteriori error estimates based on equations residuals for the heat equation with discontinuous diffusivity coefficients. The estimates are based on a fully discrete scheme based on conforming finite elements in each time slab and on the A-stable θ-scheme with 1/2 ≤ θ ≤ 1. Following remarks of [Picasso, Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237; Verfürth, Calcolo40 (2003) 195–212] it is easy to identify a time-discretization error-estimator and a space-discretization...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction–diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes

Gerd Kunert (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Singularly perturbed problems often yield solutions with strong directional features, e.g. with boundary layers. Such anisotropic solutions lend themselves to adapted, anisotropic discretizations. The quality of the corresponding numerical solution is a key issue in any computational simulation. To this end we present a new robust error estimator for a singularly perturbed reaction-diffusion problem. In contrast to conventional estimators, our proposal is suitable for anisotropic finite element...

Currently displaying 1 – 10 of 10

Page 1