Displaying 21 – 40 of 72

Showing per page

Analysis of two-level domain decomposition preconditioners based on aggregation

Marzio Sala (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider a set of assumptions...

Analysis of two-level domain decomposition preconditioners based on aggregation

Marzio Sala (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we present two-level overlapping domain decomposition preconditioners for the finite-element discretisation of elliptic problems in two and three dimensions. The computational domain is partitioned into overlapping subdomains, and a coarse space correction is added. We present an algebraic way to define the coarse space, based on the concept of aggregation. This employs a (smoothed) aggregation technique and does not require the introduction of a coarse grid. We consider a...

Calculation of low Mach number acoustics : a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other. They...

Calculation of low Mach number acoustics: a comparison of MPV, EIF and linearized Euler equations

Sabine Roller, Thomas Schwartzkopff, Roland Fortenbach, Michael Dumbser, Claus-Dieter Munz (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The calculation of sound generation and propagation in low Mach number flows requires serious reflections on the characteristics of the underlying equations. Although the compressible Euler/Navier-Stokes equations cover all effects, an approximation via standard compressible solvers does not have the ability to represent acoustic waves correctly. Therefore, different methods have been developed to deal with the problem. In this paper, three of them are considered and compared to each other....

Domain decomposition methods for solving the Burgers equation

Robert Cimrman (1999)

Applications of Mathematics

This article presents some results of numerical tests of solving the two-dimensional non-linear unsteady viscous Burgers equation. We have compared the known convergence and parallel performance properties of the additive Schwarz domain decomposition method with or without a coarse grid for the model Poisson problem with those obtained by experiments for the Burgers problem.

Elastic wave propagation in parallel: the Huygens' approach.

Javier Sabadell (2002)

Revista Matemática Complutense

The use of parallel computers makes it feasible to simulate elastic waves throughout large heterogeneous structures, and new domain decomposition methods can be used to increase their efficiency and decrease the computing time spent in the simulation. In this paper we introduce a simple parallel algorithm for the propagation of elastic waves in complex heterogeneous media after a finite element discretization. This method performs more efficiently than classic domain decomposition techniques based...

FER/SubDomain : an integrated environment for finite element analysis using object-oriented approach

Zhi-Qiang Feng, Jean-Michel Cros (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

FER/SubDomain: An Integrated Environment for Finite Element Analysis using Object-Oriented Approach

Zhi-Qiang Feng, Jean-Michel Cros (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This paper presents an OOP (Object-Oriented Programming) approach for design of finite element analysis programs. General organization of the developed software system, called FER/SubDomain, is given which includes the solver and the pre/post processors with a friendly GUI (Graphical User Interfaces). A case study with graphical representations illustrates some functionalities of the...

High degree precision decomposition method for the evolution problem with an operator under a split form

Zurab Gegechkori, Jemal Rogava, Mikheil Tsiklauri (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.

High degree precision decomposition method for the evolution problem with an operator under a split form

Zurab Gegechkori, Jemal Rogava, Mikheil Tsiklauri (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work the symmetrized sequential-parallel decomposition method of the third degree precision for the solution of Cauchy abstract problem with an operator under a split form, is presented. The third degree precision is reached by introducing a complex coefficient with the positive real part. For the considered schema the explicit a priori estimation is obtained.

Hybrid parallelization of an adaptive finite element code

Axel Voigt, Thomas Witkowski (2010)

Kybernetika

We present a hybrid OpenMP/MPI parallelization of the finite element method that is suitable to make use of modern high performance computers. These are usually built from a large bulk of multi-core systems connected by a fast network. Our parallelization method is based firstly on domain decomposition to divide the large problem into small chunks. Each of them is then solved on a multi-core system using parallel assembling, solution and error estimation. To make domain decomposition for both, the...

Improved convergence estimate for a multiply polynomially smoothed two-level method with an aggressive coarsening

Radek Tezaur, Petr Vaněk (2018)

Applications of Mathematics

A variational two-level method in the class of methods with an aggressive coarsening and a massive polynomial smoothing is proposed. The method is a modification of the method of Section 5 of Tezaur, Vaněk (2018). Compared to that method, a significantly sharper estimate is proved while requiring only slightly more computational work.

Currently displaying 21 – 40 of 72