Displaying 41 – 60 of 72

Showing per page

Model analysis of BPX preconditioner based on smoothed aggregation

Pavla Fraňková, Jan Mandel, Petr Vaněk (2015)

Applications of Mathematics

We prove nearly uniform convergence bounds for the BPX preconditioner based on smoothed aggregation under the assumption that the mesh is regular. The analysis is based on the fact that under the assumption of regular geometry, the coarse-space basis functions form a system of macroelements. This property tends to be satisfied by the smoothed aggregation bases formed for unstructured meshes.

Multimodels for incompressible flows : iterative solutions for the Navier-Stokes / Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Multimodels for incompressible flows: iterative solutions for the Navier-Stokes/Oseen coupling

L. Fatone, P. Gervasio, A. Quarteroni (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In a recent paper [4] we have proposed and analysed a suitable mathematical model which describes the coupling of the Navier-Stokes with the Oseen equations. In this paper we propose a numerical solution of the coupled problem by subdomain splitting. After a preliminary analysis, we prove a convergence result for an iterative algorithm that alternates the solution of the Navier-Stokes problem to the one of the Oseen problem.

Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing

Petr Vaněk, Marian Brezina (2013)

Applications of Mathematics

We analyze a general multigrid method with aggressive coarsening and polynomial smoothing. We use a special polynomial smoother that originates in the context of the smoothed aggregation method. Assuming the degree of the smoothing polynomial is, on each level k , at least C h k + 1 / h k , we prove a convergence result independent of h k + 1 / h k . The suggested smoother is cheaper than the overlapping Schwarz method that allows to prove the same result. Moreover, unlike in the case of the overlapping Schwarz method, analysis...

New trends in coupled simulations featuring domain decomposition and metacomputing

Philippe d'Anfray, Laurence Halpern, Juliette Ryan (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...

New trends in coupled simulations featuring domain decomposition and metacomputing

Philippe d'Anfray, Laurence Halpern, Juliette Ryan (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we test the feasibility of coupling two heterogeneous mathematical modeling integrated within two different codes residing on distant sites. A prototype is developed using Schwarz type domain decomposition as the mathematical tool for coupling. The computing technology for coupling uses a CORBA environment to implement a distributed client-server programming model. Domain decomposition methods are well suited to reducing complex physical phenomena into a sequence of parallel subproblems...

Object oriented design philosophy for scientific computing

Philippe R. B. Devloo, Gustavo C. Longhin (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

Object oriented design philosophy for scientific computing

Philippe R.B. Devloo, Gustavo C. Longhin (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This contribution gives an overview of current research in applying object oriented programming to scientific computing at the computational mechanics laboratory (LABMEC) at the school of civil engineering – UNICAMP. The main goal of applying object oriented programming to scientific computing is to implement increasingly complex algorithms in a structured manner and to hide the complexity behind a simple user interface. The following areas are current topics of research and documented within the...

On a Parallel Implementation of the Mortar Element Method

Gassav S. Abdoulaev, Yves Achdou, Yuri A. Kuznetsov, Christophe Prud'homme (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We discuss a parallel implementation of the domain decomposition method based on the macro-hybrid formulation of a second order elliptic equation and on an approximation by the mortar element method. The discretization leads to an algebraic saddle- point problem. An iterative method with a block- diagonal preconditioner is used for solving the saddle- point problem. A parallel implementation of the method is emphasized. Finally the results of numerical experiments are presented.

On adaptive BDDC for the flow in heterogeneous porous media

Bedřich Sousedík (2019)

Applications of Mathematics

We study a method based on Balancing Domain Decomposition by Constraints (BDDC) for numerical solution of a single-phase flow in heterogeneous porous media. The method solves for both flux and pressure variables. The fluxes are resolved in three steps: the coarse solve is followed by subdomain solves and last we look for a divergence-free flux correction and pressures using conjugate gradients with the BDDC preconditioner. Our main contribution is an application of the adaptive algorithm for selection...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz coupling of Bidomain and Monodomain models in electrocardiology

Luca Gerardo-Giorda, Mauro Perego, Alessandro Veneziani (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

The Bidomain model is nowadays one of the most accurate mathematical descriptions of the action potential propagation in the heart. However, its numerical approximation is in general fairly expensive as a consequence of the mathematical features of this system. For this reason, a simplification of this model, called Monodomain problem is quite often adopted in order to reduce computational costs. Reliability of this model is however questionable, in particular in the presence of applied currents...

Optimized Schwarz Methods for the Bidomain system in electrocardiology

Luca Gerardo-Giorda, Mauro Perego (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The propagation of the action potential in the heart chambers is accurately described by the Bidomain model, which is commonly accepted and used in the specialistic literature. However, its mathematical structure of a degenerate parabolic system entails high computational costs in the numerical solution of the associated linear system. Domain decomposition methods are a natural way to reduce computational costs, and Optimized Schwarz Methods have proven in the recent years their effectiveness in...

Currently displaying 41 – 60 of 72