Previous Page 6

Displaying 101 – 105 of 105

Showing per page

Numerical study of self-focusing solutions to the Schrödinger-Debye system

Christophe Besse, Brigitte Bidégaray (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article we implement different numerical schemes to simulate the Schrödinger-Debye equations that occur in nonlinear optics. Since the existence of blow-up solutions is an open problem, we try to compute such solutions. The convergence of the methods is proved and simulations seem indeed to show that for at least small delays self-focusing solutions may exist.

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Numerical study of the Davey-Stewartson system

Christophe Besse, Norbert J. Mauser, Hans Peter Stimming (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...

Numerical study on the blow-up rate to a quasilinear parabolic equation

Anada, Koichi, Ishiwata, Tetsuya, Ushijima, Takeo (2017)

Proceedings of Equadiff 14

In this paper, we consider the blow-up solutions for a quasilinear parabolic partial differential equation u t = u 2 ( u x x + u ) . We numerically investigate the blow-up rates of these solutions by using a numerical method which is recently proposed by the authors [3].

Numerical treatment of a time dependent inverse problem in photon transport

S. Pieraccini, R. Riganti, A. Belleni-Morante (2005)

Bollettino dell'Unione Matematica Italiana

The time-dependent intensity of a UV-photon source, located inside an interstellar cloud, is determined by formulating and solving an inverse problem for the integro-differential transport equation of photons in a one-dimensional slab. Starting from a discretizazion of the forward problem, an iterative procedure is used to compute the values of the source intensity at increasing values of the time.

Currently displaying 101 – 105 of 105

Previous Page 6