The search session has expired. Please query the service again.
Displaying 101 –
106 of
106
In this article we implement different numerical schemes to simulate the
Schrödinger-Debye equations that occur in nonlinear optics. Since the
existence of blow-up solutions is an open problem, we try to compute such
solutions. The convergence of the methods is proved and simulations seem
indeed to show that for at least small delays self-focusing solutions may
exist.
We deal with numerical analysis and simulations of the Davey-Stewartson equations which model, for example, the evolution of water surface waves. This time dependent PDE system is particularly interesting as a generalization of the 1-d integrable NLS to 2 space dimensions. We use a time splitting spectral method where we give a convergence analysis for the semi-discrete version of the scheme. Numerical results are presented for various blow-up phenomena of the equation, including blowup of defocusing,...
We deal with numerical analysis and simulations of the Davey-Stewartson equations
which model, for example, the evolution of water surface waves.
This time dependent PDE system is particularly interesting as a generalization
of the 1-d integrable NLS to 2 space dimensions.
We use a time splitting spectral method where
we give a convergence analysis for the semi-discrete version of the scheme.
Numerical results are presented for various blow-up phenomena of
the equation, including blowup of defocusing,...
The paper deals with the analysis and numerical study of the domain decomposition based preconditioner for algebraic systems arising from the discontinuous Galerkin (DG) discretization of the linear elliptic problems. We introduce the DG discretization of the model problem and present the spectral -bound of the corresponding linear algebraic systems. Moreover, we present the two-level additive Schwarz preconditioner together with the theoretical result related to the estimate of the condition number....
In this paper, we consider the blow-up solutions for a quasilinear parabolic partial differential equation . We numerically investigate the blow-up rates of these solutions by using a numerical method which is recently proposed by the authors [3].
The time-dependent intensity of a UV-photon source, located inside an interstellar cloud, is determined by formulating and solving an inverse problem for the integro-differential transport equation of photons in a one-dimensional slab. Starting from a discretizazion of the forward problem, an iterative procedure is used to compute the values of the source intensity at increasing values of the time.
Currently displaying 101 –
106 of
106