Page 1 Next

Displaying 1 – 20 of 92

Showing per page

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

Temporal convergence of a locally implicit discontinuous Galerkin method for Maxwell’s equations∗

Ludovic Moya (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we study the temporal convergence of a locally implicit discontinuous Galerkin method for the time-domain Maxwell’s equations modeling electromagnetic waves propagation. Particularly, we wonder whether the method retains its second-order ordinary differential equation (ODE) convergence under stable simultaneous space-time grid refinement towards the true partial differential equation (PDE) solution. This is not a priori clear due to the component splitting which can introduce order...

The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations

Didier Auroux, Maëlle Nodet (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers’ equation). Our aim is to prove some theoretical results on the convergence,...

The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations

Didier Auroux, Maëlle Nodet (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers’ equation). Our aim is to prove some theoretical results on the convergence, and convergence properties, of this algorithm. We...

The Back and Forth Nudging algorithm for data assimilation problems : theoretical results on transport equations

Didier Auroux, Maëlle Nodet (2012)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers’ equation). Our aim is to prove some theoretical results on the convergence,...

The Child–Langmuir limit for semiconductors : a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical comparisons...

The Child–Langmuir limit for semiconductors: a numerical validation

María-José Cáceres, José-Antonio Carrillo, Pierre Degond (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Boltzmann–Poisson system modeling the electron flow in semiconductors is used to discuss the validity of the Child–Langmuir asymptotics. The scattering kernel is approximated by a simple relaxation time operator. The Child–Langmuir limit gives an approximation of the current-voltage characteristic curves by means of a scaling procedure in which the ballistic velocity is much larger that the thermal one. We discuss the validity of the Child–Langmuir regime by performing detailed numerical...

The correct use of the Lax–Friedrichs method

Michael Breuß (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We are concerned with the structure of the operator corresponding to the Lax–Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax–Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version of...

The correct use of the Lax–Friedrichs method

Michael Breuß (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We are concerned with the structure of the operator corresponding to the Lax–Friedrichs method. At first, the phenomenae which may arise by the naive use of the Lax–Friedrichs scheme are analyzed. In particular, it turns out that the correct definition of the method has to include the details of the discretization of the initial condition and the computational domain. Based on the results of the discussion, we give a recipe that ensures that the number of extrema within the discretized version...

The CUDA implementation of the method of lines for the curvature dependent flows

Tomáš Oberhuber, Atsushi Suzuki, Vítězslav Žabka (2011)

Kybernetika

We study the use of a GPU for the numerical approximation of the curvature dependent flows of graphs - the mean-curvature flow and the Willmore flow. Both problems are often applied in image processing where fast solvers are required. We approximate these problems using the complementary finite volume method combined with the method of lines. We obtain a system of ordinary differential equations which we solve by the Runge-Kutta-Merson solver. It is a robust solver with an automatic choice of the...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version of...

The existence of a solution and a numerical method for the Timoshenko nonlinear wave system

Jemal Peradze (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The initial boundary value problem for a beam is considered in the Timoshenko model. Assuming the analyticity of the initial conditions, it is proved that the problem is solvable throughout the time interval. After that, a numerical algorithm, consisting of three steps, is constructed. The solution is approximated with respect to the spatial and time variables using the Galerkin method and a Crank–Nicholson type scheme. The system of equations obtained by discretization is solved by a version...

The far-field modelling of transonic compressible flows

C. A. Coclici, Ivan L. Sofronov, Wolfgang L. Wendland (2001)

Mathematica Bohemica

We present a method for the construction of artificial far-field boundary conditions for two- and three-dimensional exterior compressible viscous flows in aerodynamics. Since at some distance to the surrounded body (e.g. aeroplane, wing section, etc.) the convective forces are strongly dominant over the viscous ones, the viscosity effects are neglected there and the flow is assumed to be inviscid. Accordingly, we consider two different model zones leading to a decomposition of the original flow...

Currently displaying 1 – 20 of 92

Page 1 Next