Displaying 81 – 100 of 128

Showing per page

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2004)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Numerical minimization of eigenmodes of a membrane with respect to the domain

Édouard Oudet (2010)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we introduce a numerical approach adapted to the minimization of the eigenmodes of a membrane with respect to the domain. This method is based on the combination of the Level Set method of S. Osher and J.A. Sethian with the relaxed approach. This algorithm enables both changing the topology and working on a fixed regular grid.

Numerical simulations for nodal domains and spectral minimal partitions

Virginie Bonnaillie-Noël, Bernard Helffer, Gregory Vial (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We recall here some theoretical results of Helffer et al. [Ann. Inst. H. Poincaré Anal. Non Linéaire (2007) doi:10.1016/j.anihpc.2007.07.004] about minimal partitions and propose numerical computations to check some of their published or unpublished conjectures and exhibit new ones.

On a method of two-sided eigenvalue estimates for elliptic equations of the form A u - λ B u = 0

Karel Rektorys, Zdeněk Vospěl (1981)

Aplikace matematiky

The Collatz method of twosided eigenvalue estimates was extended by K. Rektorys in his monography Variational Methods to the case of differential equations of the form A u - λ B u = 0 with elliptic operators. This method requires to solve, successively, certain boundary value problems. In the case of partial differential equations, these problems are to be solved approximately, as a rule, and this is the source of further errors. In the work, it is shown how to estimate these additional errors, or how to avoid...

On Finite Element Methods for 2nd order (semi–) periodic Eigenvalue Problems

De Schepper, H. (2000)

Serdica Mathematical Journal

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is...

On the domain geometry dependence of the LBB condition

Evgenii V. Chizhonkov, Maxim A. Olshanskii (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The LBB condition is well-known to guarantee the stability of a finite element (FE) velocity - pressure pair in incompressible flow calculations. To ensure the condition to be satisfied a certain constant should be positive and mesh-independent. The paper studies the dependence of the LBB condition on the domain geometry. For model domains such as strips and rings the substantial dependence of this constant on geometry aspect ratios is observed. In domains with highly anisotropic substructures...

On the stability of Bravais lattices and their Cauchy–Born approximations

Thomas Hudson, Christoph Ortner (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods, we analyze...

On the stability of Bravais lattices and their Cauchy–Born approximations*

Thomas Hudson, Christoph Ortner (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We investigate the stability of Bravais lattices and their Cauchy–Born approximations under periodic perturbations. We formulate a general interaction law and derive its Cauchy–Born continuum limit. We then analyze the atomistic and Cauchy–Born stability regions, that is, the sets of all matrices that describe a stable Bravais lattice in the atomistic and Cauchy–Born models respectively. Motivated by recent results in one dimension on the stability of atomistic/continuum coupling methods,...

Postprocessing and higher order convergence for the mixed finite element approximations of the Stokes eigenvalue problems

Hongtao Chen, Shanghui Jia, Hehu Xie (2009)

Applications of Mathematics

In this paper we propose a method for improving the convergence rate of the mixed finite element approximations for the Stokes eigenvalue problem. It is based on a postprocessing strategy that consists of solving an additional Stokes source problem on an augmented mixed finite element space which can be constructed either by refining the mesh or by using the same mesh but increasing the order of the mixed finite element space.

Currently displaying 81 – 100 of 128