A variational method for parameter identification
The starting point of the analysis in this paper is the following situation: “In a bounded domain in , let a finite set of points be given. A triangulation of that domain has to be found, whose vertices are the given points and which is ‘suitable’ for the linear conforming Finite Element Method (FEM).” The result of this paper is that for the discrete Poisson equation and under some weak additional assumptions, only the use of Delaunay triangulations preserves the maximum principle.
This paper provides an accelerated two-grid stabilized mixed finite element scheme for the Stokes eigenvalue problem based on the pressure projection. With the scheme, the solution of the Stokes eigenvalue problem on a fine grid is reduced to the solution of the Stokes eigenvalue problem on a much coarser grid and the solution of a linear algebraic system on the fine grid. By solving a slightly different linear problem on the fine grid, the new algorithm significantly improves the theoretical error...
We consider a general abstract framework of a continuous elliptic problem set on a Hilbert space V that is approximated by a family of (discrete) problems set on a finite-dimensional space of finite dimension not necessarily included into V. We give a series of realistic conditions on an error estimator that allows to conclude that the marking strategy of bulk type leads to the geometric convergence of the adaptive algorithm. These conditions are then verified for different concrete problems...
In this paper we propose and analyze stable variational formulations for convection diffusion problems starting from concepts introduced by Sangalli. We derive efficient and reliable a posteriori error estimators that are based on these formulations. The analysis of resulting adaptive solution concepts, when specialized to the setting suggested by Sangalli’s work, reveals partly unexpected phenomena related to the specific nature of the norms induced by the variational formulation. Several remedies,...
In this paper we propose and analyze stable variational formulations for convection diffusion problems starting from concepts introduced by Sangalli. We derive efficient and reliable a posteriori error estimators that are based on these formulations. The analysis of resulting adaptive solution concepts, when specialized to the setting suggested by Sangalli’s work, reveals partly unexpected phenomena related to the specific nature of the norms induced by the variational formulation. Several remedies,...
We generalize the overlapping Schwarz domain decomposition method to problems of linear elasticity. The convergence rate independent of the mesh size, coarse-space size, Korn’s constant and essential boundary conditions is proved here. Abstract convergence bounds developed here can be used for an analysis of the method applied to singular perturbations of other elliptic problems.