Displaying 21 – 40 of 156

Showing per page

On a stabilized colocated Finite Volume scheme for the Stokes problem

Robert Eymard, Raphaèle Herbin, Jean Claude Latché (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

We present and analyse in this paper a novel colocated Finite Volume scheme for the solution of the Stokes problem. It has been developed following two main ideas. On one hand, the discretization of the pressure gradient term is built as the discrete transposed of the velocity divergence term, the latter being evaluated using a natural finite volume approximation; this leads to a non-standard interpolation formula for the expression of the pressure on the edges of the control volumes. On the other...

On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type

Ivan Hlaváček, Michal Křížek (1987)

Aplikace matematiky

A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local O ( h 3 / 2 ) -superconvergence of the derivatives in the L 2 -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.

On a superconvergent finite element scheme for elliptic systems. III. Optimal interior estimates

Ivan Hlaváček, Michal Křížek (1987)

Aplikace matematiky

Second order elliptic systems with boundary conditions of Dirichlet, Neumann’s or Newton’s type are solved by means of linear finite elements on regular uniform triangulations. Error estimates of the optimal order O ( h 2 ) are proved for the averaged gradient on any fixed interior subdomain, provided the problem under consideration is regular in a certain sense.

On a superconvergent finite element scheme for elliptic systems. I. Dirichlet boundary condition

Ivan Hlaváček, Michal Křížek (1987)

Aplikace matematiky

Second order elliptic systems with Dirichlet boundary conditions are solved by means of affine finite elements on regular uniform triangulations. A simple averagign scheme is proposed, which implies a superconvergence of the gradient. For domains with enough smooth boundary, a global estimate O ( h 3 / 2 ) is proved in the L 2 -norm. For a class of polygonal domains the global estimate O ( h 2 ) can be proven.

On a variant of the local projection method stable in the SUPG norm

Petr Knobloch (2009)

Kybernetika

We consider the local projection finite element method for the discretization of a scalar convection-diffusion equation with a divergence-free convection field. We introduce a new fluctuation operator which is defined using an orthogonal L 2 projection with respect to a weighted L 2 inner product. We prove that the bilinear form corresponding to the discrete problem satisfies an inf-sup condition with respect to the SUPG norm and derive an error estimate for the discrete solution.

On approximation of the Neumann problem by the penalty method

Michal Křížek (1993)

Applications of Mathematics

We prove that penalization of constraints occuring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange's multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.

On discontinuous Galerkin method and semiregular family of triangulations

Aleš Prachař (2006)

Applications of Mathematics

Discretization of second order elliptic partial differential equations by discontinuous Galerkin method often results in numerical schemes with penalties. In this paper we analyze these penalized schemes in the context of quite general triangular meshes satisfying only a semiregularity assumption. A new (modified) penalty term is presented and theoretical properties are proven together with illustrative numerical results.

On equilibrium finite elements in three-dimensional case

Sergey Korotov (1997)

Applications of Mathematics

The space of divergence-free functions with vanishing normal flux on the boundary is approximated by subspaces of finite elements that have the same property. The easiest way of generating basis functions in these subspaces is considered.

On exact results in the finite element method

Ivan Hlaváček, Michal Křížek (2001)

Applications of Mathematics

We prove that the finite element method for one-dimensional problems yields no discretization error at nodal points provided the shape functions are appropriately chosen. Then we consider a biharmonic problem with mixed boundary conditions and the weak solution u . We show that the Galerkin approximation of u based on the so-called biharmonic finite elements is independent of the values of u in the interior of any subelement.

On FE-grid relocation in solving unilateral boundary value problems by FEM

Jaroslav Haslinger, Pekka Neittaanmäki, Kimmo Salmenjoki (1992)

Applications of Mathematics

We consider FE-grid optimization in elliptic unilateral boundary value problems. The criterion used in grid optimization is the total potential energy of the system. It is shown that minimization of this cost functional means a decrease of the discretization error or a better approximation of the unilateral boundary conditions. Design sensitivity analysis is given with respect to the movement of nodal points. Numerical results for the Dirichlet-Signorini problem for the Laplace equation and the...

On Finite Element Methods for 2nd order (semi–) periodic Eigenvalue Problems

De Schepper, H. (2000)

Serdica Mathematical Journal

We deal with a class of elliptic eigenvalue problems (EVPs) on a rectangle Ω ⊂ R^2 , with periodic or semi–periodic boundary conditions (BCs) on ∂Ω. First, for both types of EVPs, we pass to a proper variational formulation which is shown to fit into the general framework of abstract EVPs for symmetric, bounded, strongly coercive bilinear forms in Hilbert spaces, see, e.g., [13, §6.2]. Next, we consider finite element methods (FEMs) without and with numerical quadrature. The aim of the paper is...

Currently displaying 21 – 40 of 156