Numerical approximation of axisymmetric positive solutions of semilinear elliptic equations in axisymmetric domains of
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.
In this paper, we present a numerical homogenization scheme for indefinite, timeharmonic Maxwell’s equations involving potentially rough (rapidly oscillating) coefficients. The method involves an H(curl)-stable, quasi-local operator, which allows for a correction of coarse finite element functions such that order optimal (w.r.t. the mesh size) error estimates are obtained. To that end, we extend the procedure of [D. Gallistl, P. Henning, B. Verfürth, Numerical homogenization for H(curl)-problems,...
Motivated by well-driven flow transport in porous media, Chen and Yue proposed a numerical homogenization method for Green function [Multiscale Model. Simul.1 (2003) 260–303]. In that paper, the authors focused on the well pore pressure, so the local error analysis in maximum norm was presented. As a continuation, we will consider a fully discrete scheme and its multiscale error analysis on the velocity field.
We examine the effect of numerical integration on the accuracy of high order conforming pyramidal finite element methods. Non-smooth shape functions are indispensable to the construction of pyramidal elements, and this means the conventional treatment of numerical integration, which requires that the finite element approximation space is piecewise polynomial, cannot be applied. We develop an analysis that allows the finite element approximation space to include non-smooth functions and show that,...
We examine the effect of numerical integration on the accuracy of high order conforming pyramidal finite element methods. Non-smooth shape functions are indispensable to the construction of pyramidal elements, and this means the conventional treatment of numerical integration, which requires that the finite element approximation space is piecewise polynomial, cannot be applied. We develop an analysis that allows the finite element approximation space to include non-smooth functions and show that,...
Using the high order Trefftz finite element method for solving partial differential equation requires numerical integration of oscillating functions. This integration could be performed, instead of classic techniques, also by the Levin method with some modifications. This paper shortly describes both the Trefftz method and the Levin method with its modification.
The paper contributes to the problem of finding all possible structures and waves, which may arise and preserve themselves in the open nonlinear medium, described by the mathematical model of heat structures. A new class of self-similar blow-up solutions of this model is constructed numerically and their stability is investigated. An effective and reliable numerical approach is developed and implemented for solving the nonlinear elliptic self-similar problem and the parabolic problem. This approach...
The motion of a three-dimensional glacier is considered. Ice is modeled as an incompressible non-Newtonian fluid. At each time step, given the shape of the glacier, a nonlinear elliptic system has to be solved in order to obtain the two components of the horizontal velocity field. Then, the shape of the glacier is updated by solving a transport equation. Finite element techniques are used to compute the velocity field and to solve the transport equation. Numerical results are compared to experiments...