Displaying 281 – 300 of 2180

Showing per page

A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...

A residual based A POSTERIORI error estimator for an augmented mixed finite element method in linear elasticity

Tomás P. Barrios, Gabriel N. Gatica, María González, Norbert Heuer (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we develop a residual based a posteriori error analysis for an augmented mixed finite element method applied to the problem of linear elasticity in the plane. More precisely, we derive a reliable and efficient a posteriori error estimator for the case of pure Dirichlet boundary conditions. In addition, several numerical experiments confirming the theoretical properties of the estimator, and illustrating the capability of the corresponding adaptive algorithm to localize the singularities...

A review of two different approaches for superconvergence analysis

Qiding Zhu (1998)

Applications of Mathematics

In 1995, Wahbin presented a method for superconvergence analysis called “Interior symmetric method,” and declared that it is universal. In this paper, we carefully examine two superconvergence techniques used by mathematicians both in China and in America. We conclude that they are essentially different.

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang (2006)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H 1 -norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

A second-order finite volume element method on quadrilateral meshes for elliptic equations

Min Yang (2007)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, by use of affine biquadratic elements, we construct and analyze a finite volume element scheme for elliptic equations on quadrilateral meshes. The scheme is shown to be of second-order in H1-norm, provided that each quadrilateral in partition is almost a parallelogram. Numerical experiments are presented to confirm the usefulness and efficiency of the method.

A Slideing Mesh-Mortar Method for a two Dimensional Currents Model of Electric Engines

Annalisa Buffa, Yvon Maday, Francesca Rapetti (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the...

A sliding Mesh-Mortar method for a two dimensional Eddy currents model of electric engines

Annalisa Buffa, Yvon Maday, Francesca Rapetti (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper deals with the application of a non-conforming domain decomposition method to the problem of the computation of induced currents in electric engines with moving conductors. The eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as primary variable. Two discretizations are proposed, the first one based on curved finite elements and the...

A Sobolev gradient method for treating the steady-state incompressible Navier-Stokes equations

Robert Renka (2013)

Open Mathematics

The velocity-vorticity-pressure formulation of the steady-state incompressible Navier-Stokes equations in two dimensions is cast as a nonlinear least squares problem in which the functional is a weighted sum of squared residuals. A finite element discretization of the functional is minimized by a trust-region method in which the trustregion radius is defined by a Sobolev norm and the trust-region subproblems are solved by a dogleg method. Numerical test results show the method to be effective.

Currently displaying 281 – 300 of 2180