Displaying 41 – 60 of 141

Showing per page

The G method for heterogeneous anisotropic diffusion on general meshes

Léo Agélas, Daniele A. Di Pietro, Jérôme Droniou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous diffusivity,...

The general form of local bilinear functions

Milan Práger (1993)

Applications of Mathematics

The scalar product of the FEM basis functions with non-intersecting supports vanishes. This property is generalized and the concept of local bilinear functional in a Hilbert space is introduced. The general form of such functionals in the spaces L 2 ( a , b ) and H 1 ( a , b ) is given.

The generalized finite volume SUSHI scheme for the discretization of the peaceman model

Mohamed Mandari, Mohamed Rhoudaf, Ouafa Soualhi (2021)

Applications of Mathematics

We demonstrate some a priori estimates of a scheme using stabilization and hybrid interfaces applying to partial differential equations describing miscible displacement in porous media. This system is made of two coupled equations: an anisotropic diffusion equation on the pressure and a convection-diffusion-dispersion equation on the concentration of invading fluid. The anisotropic diffusion operators in both equations require special care while discretizing by a finite volume method SUSHI. Later,...

The hp-version of the boundary element method with quasi-uniform meshes in three dimensions

Alexei Bespalov, Norbert Heuer (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H1-regular whereas, on open surfaces, edge...

The invertibility of the isoparametric mappings for triangular quadratic Lagrange finite elements

Josef Dalík (2012)

Applications of Mathematics

A reference triangular quadratic Lagrange finite element consists of a right triangle K ^ with unit legs S 1 , S 2 , a local space ^ of quadratic polynomials on K ^ and of parameters relating the values in the vertices and midpoints of sides of K ^ to every function from ^ . Any isoparametric triangular quadratic Lagrange finite element is determined by an invertible isoparametric mapping h = ( F 1 , F 2 ) ^ × ^ . We explicitly describe such invertible isoparametric mappings h for which the images h ( S 1 ) , h ( S 2 ) of the segments S 1 , S 2 are segments,...

The local solution of a parabolic-elliptic equation with a nonlinear Neumann boundary condition

Volker Pluschke, Frank Weber (1999)

Commentationes Mathematicae Universitatis Carolinae

We investigate a parabolic-elliptic problem, where the time derivative is multiplied by a coefficient which may vanish on time-dependent spatial subdomains. The linear equation is supplemented by a nonlinear Neumann boundary condition - u / ν A = g ( · , · , u ) with a locally defined, L r -bounded function g ( t , · , ξ ) . We prove the existence of a local weak solution to the problem by means of the Rothe method. A uniform a priori estimate for the Rothe approximations in L , which is required by the local assumptions on g , is derived by...

The method of fictitious right-hand sides

Milan Práger (1984)

Aplikace matematiky

The paper deals with the application of a fast algorithm for the solution of finite-difference systems for boundary-value problems on a standard domain (e.g. on a rectangle) to the solution of a boundary-value problem on a domain of general shape contained in the standard domain. A simple iterative procedure is suggested for the determination of fictitious right-hand sides for the system on the standard domain so that its solution is the desired one. Under the assumptions that are usual for matrices...

Currently displaying 41 – 60 of 141