Displaying 1281 – 1300 of 2193

Showing per page

Nouvelles formulations intégrales pour les problèmes de diffraction d’ondes

David P. Levadoux, Bastiaan L. Michielsen (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all frequencies....

Nouvelles formulations intégrales pour les problèmes de diffraction d'ondes

David P. Levadoux, Bastiaan L. Michielsen (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present an integral equation method for solving boundary value problems of the Helmholtz equation in unbounded domains. The method relies on the factorisation of one of the Calderón projectors by an operator approximating the exterior admittance (Dirichlet to Neumann) operator of the scattering obstacle. We show how the pseudo-differential calculus allows us to construct such approximations and that this yields integral equations without internal resonances and being well-conditioned at all...

Numerical algorithms for perspective shape from shading

Michael Breuss, Emiliano Cristiani, Jean-Denis Durou, Maurizio Falcone, Oliver Vogel (2010)

Kybernetika

The Shape-From-Shading (SFS) problem is a fundamental and classic problem in computer vision. It amounts to compute the 3-D depth of objects in a single given 2-D image. This is done by exploiting information about the illumination and the image brightness. We deal with a recent model for Perspective SFS (PSFS) for Lambertian surfaces. It is defined by a Hamilton–Jacobi equation and complemented by state constraints boundary conditions. In this paper we investigate and compare three state-of-the-art...

Numerical analysis for optimal shape design in elliptic boundary value problems

Zdeněk Kestřánek (1988)

Aplikace matematiky

Shape optimization problems are optimal design problems in which the shape of the boundary plays the role of a design, i.e. the unknown part of the problem. Such problems arise in structural mechanics, acoustics, electrostatics, fluid flow and other areas of engineering and applied science. The mathematical theory of such kind of problems has been developed during the last twelve years. Recently the theory has been extended to cover also situations in which the behaviour of the system is governed...

Numerical analysis of a frictionless viscoelastic piezoelectric contact problem

Mikael Barboteu, Jose Ramon Fernández, Youssef Ouafik (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider the quasistatic frictionless contact problem between a viscoelastic piezoelectric body and a deformable obstacle. The linear electro-viscoelastic constitutive law is employed to model the piezoelectric material and the normal compliance condition is used to model the contact. The variational formulation is derived in a form of a coupled system for the displacement and electric potential fields. An existence and uniqueness result is recalled. Then, a fully discrete scheme...

Numerical analysis of a relaxed variational model of hysteresis in two-phase solids

Carsten Carstensen, Petr Plecháč (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient discretization....

Numerical Analysis of a Relaxed Variational Model of Hysteresis in Two-Phase Solids

Carsten Carstensen, Petr Plecháč (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper presents the numerical analysis for a variational formulation of rate-independent phase transformations in elastic solids due to Mielke et al. The new model itself suggests an implicit time-discretization which is combined with the finite element method in space. A priori error estimates are established for the quasioptimal spatial approximation of the stress field within one time-step. A posteriori error estimates motivate an adaptive mesh-refining algorithm for efficient...

Numerical analysis of a Stokes interface problem based on formulation using the characteristic function

Yoshiki Sugitani (2017)

Applications of Mathematics

Numerical analysis of a model Stokes interface problem with the homogeneous Dirichlet boundary condition is considered. The interface condition is interpreted as an additional singular force field to the Stokes equations using the characteristic function. The finite element method is applied after introducing a regularization of the singular source term. Consequently, the error is divided into the regularization and discretization parts which are studied separately. As a result, error estimates...

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc:= n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping (NtD)...

Numerical analysis of a transmission problem with Signorini contact using mixed-FEM and BEM*

Gabriel N. Gatica, Matthias Maischak, Ernst P. Stephan (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the dual formulation of the interface problem consisting of a linear partial differential equation with variable coefficients in some bounded Lipschitz domain Ω in n (n ≥ 2) and the Laplace equation with some radiation condition in the unbounded exterior domain Ωc := n Ω ¯ . The two problems are coupled by transmission and Signorini contact conditions on the interface Γ = ∂Ω. The exterior part of the interface problem is rewritten using a Neumann to Dirichlet mapping...

Numerical analysis of nonlinear elliptic-parabolic equations

Emmanuel Maitre (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern’s iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).

Numerical analysis of nonlinear elliptic-parabolic equations

Emmanuel Maitre (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper deals with the numerical approximation of mild solutions of elliptic-parabolic equations, relying on the existence results of Bénilan and Wittbold (1996). We introduce a new and simple algorithm based on Halpern's iteration for nonexpansive operators (Bauschke, 1996; Halpern, 1967; Lions, 1977), which is shown to be convergent in the degenerate case, and compare it with existing schemes (Jäger and Kačur, 1995; Kačur, 1999).

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of some optimal control problems governed by a class of quasilinear elliptic equations*

Eduardo Casas, Fredi Tröltzsch (2011)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper, we carry out the numerical analysis of a distributed optimal control problem governed by a quasilinear elliptic equation of non-monotone type. The goal is to prove the strong convergence of the discretization of the problem by finite elements. The main issue is to get error estimates for the discretization of the state equation. One of the difficulties in this analysis is that, in spite of the partial differential equation has a unique solution for any given control, the uniqueness...

Numerical analysis of the adiabatic variable method for the approximation of the nuclear hamiltonian

Yvon Maday, Gabriel Turinici (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on 3 n variables where n stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed many...

Numerical Analysis of the Adiabatic Variable Method for the Approximation of the Nuclear Hamiltonian

Yvon Maday, Gabriel Turinici (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Many problems in quantum chemistry deal with the computation of fundamental or excited states of molecules and lead to the resolution of eigenvalue problems. One of the major difficulties in these computations lies in the very large dimension of the systems to be solved. Indeed these eigenfunctions depend on 3n variables where n stands for the number of particles (electrons and/or nucleari) in the molecule. In order to diminish the size of the systems to be solved, the chemists have proposed...

Currently displaying 1281 – 1300 of 2193