The search session has expired. Please query the service again.
Displaying 1301 –
1320 of
2193
The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit -elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform -ellipticity are found.
The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.
The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...
The Method of Fundamental Solutions (MFS) is a boundary-type
meshless method for the solution of certain elliptic boundary
value problems. In this work, we investigate the properties of the
matrices that arise when the MFS is applied to the
Dirichlet problem for Laplace's equation in a disk. In particular,
we study the behaviour of the eigenvalues of these matrices and
the cases in which they vanish. Based on this, we propose a
modified efficient numerical algorithm for the solution of the
problem...
In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...
In this article, we provide a priori error estimates for the spectral and
pseudospectral Fourier (also called planewave) discretizations of the
periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral
discretization of the periodic Kohn-Sham
model, within the local density approximation (LDA). These models
allow to compute approximations of the electronic ground state energy and density
of molecular systems in the condensed phase. The TFW model is strictly
convex with respect to the...
In this work, the quasistatic thermoviscoelastic thermistor problem is
considered. The thermistor model describes the combination of the effects due to
the heat, electrical current conduction and Joule's heat generation. The variational
formulation leads to a coupled system of nonlinear variational equations for which
the existence of a weak solution is recalled.
Then, a fully discrete algorithm is introduced based on the finite element
method to approximate the spatial variable and an Euler scheme...
2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)This paper provides a new method and corresponding numerical schemes
to approximate a fractional-in-space diffusion equation on a bounded domain
under boundary conditions of the Dirichlet, Neumann or Robin type.
The method is based on a matrix representation of the fractional-in-space
operator and the novelty of this approach is that a standard discretisation
of the operator leads to a system of linear ODEs with the matrix...
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.
We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...
We introduce and analyze a numerical strategy
to approximate effective coefficients in stochastic homogenization of discrete elliptic
equations. In particular, we consider the simplest case possible: An elliptic equation on
the d-dimensional lattice
with independent and identically distributed conductivities on the associated edges.
Recent results by Otto and the author quantify the error made by approximating
the homogenized coefficient by the averaged energy of a regularized
corrector (with...
We first prove an abstract result for a class of nonlocal
problems using fixed point method. We apply this result to
equations revelant from plasma physic problems. These equations
contain terms like monotone or relative rearrangement of functions.
So, we start the approximation study by using finite element to
discretize this nonstandard quantities. We end the paper by giving
a numerical resolution of a model containing those terms.
In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large are large nonlinear exponents . In a second part, we compute...
Currently displaying 1301 –
1320 of
2193