The search session has expired. Please query the service again.

Displaying 1301 – 1320 of 2193

Showing per page

Numerical analysis of the general biharmonic problem by the finite element method

Jiří Hřebíček (1982)

Aplikace matematiky

The present paper deals with solving the general biharmonic problem by the finite element method using curved triangular finit C 1 -elements introduced by Ženíšek. The effect of numerical integration is analysed in the case of mixed boundary conditions and sufficient conditions for the uniform V O h -ellipticity are found.

Numerical analysis of the meshless element-free Galerkin method for hyperbolic initial-boundary value problems

Yaozong Tang, Xiaolin Li (2017)

Applications of Mathematics

The meshless element-free Galerkin method is developed for numerical analysis of hyperbolic initial-boundary value problems. In this method, only scattered nodes are required in the domain. Computational formulae of the method are analyzed in detail. Error estimates and convergence are also derived theoretically and verified numerically. Numerical examples validate the performance and efficiency of the method.

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace’s equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the MFS for certain harmonic problems

Yiorgos-Sokratis Smyrlis, Andreas Karageorghis (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The Method of Fundamental Solutions (MFS) is a boundary-type meshless method for the solution of certain elliptic boundary value problems. In this work, we investigate the properties of the matrices that arise when the MFS is applied to the Dirichlet problem for Laplace's equation in a disk. In particular, we study the behaviour of the eigenvalues of these matrices and the cases in which they vanish. Based on this, we propose a modified efficient numerical algorithm for the solution of the problem...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we provide a priorierror estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models

Eric Cancès, Rachida Chakir, Yvon Maday (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we provide a priori error estimates for the spectral and pseudospectral Fourier (also called planewave) discretizations of the periodic Thomas-Fermi-von Weizsäcker (TFW) model and for the spectral discretization of the periodic Kohn-Sham model, within the local density approximation (LDA). These models allow to compute approximations of the electronic ground state energy and density of molecular systems in the condensed phase. The TFW model is strictly convex with respect to the...

Numerical analysis of the quasistatic thermoviscoelastic thermistor problem

José R. Fernández (2006)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, the quasistatic thermoviscoelastic thermistor problem is considered. The thermistor model describes the combination of the effects due to the heat, electrical current conduction and Joule's heat generation. The variational formulation leads to a coupled system of nonlinear variational equations for which the existence of a weak solution is recalled. Then, a fully discrete algorithm is introduced based on the finite element method to approximate the spatial variable and an Euler scheme...

Numerical Approximation of a Fractional-In-Space Diffusion Equation, I

Ilic, M., Liu, F., Turner, I., Anh, V. (2005)

Fractional Calculus and Applied Analysis

2000 Mathematics Subject Classification: 26A33 (primary), 35S15 (secondary)This paper provides a new method and corresponding numerical schemes to approximate a fractional-in-space diffusion equation on a bounded domain under boundary conditions of the Dirichlet, Neumann or Robin type. The method is based on a matrix representation of the fractional-in-space operator and the novelty of this approach is that a standard discretisation of the operator leads to a system of linear ODEs with the matrix...

Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle

Maria I. M. Copetti (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.

Numerical approximation of dynamic deformations of a thermoviscoelastic rod against an elastic obstacle

Maria I.M. Copetti (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper we consider a hyperbolic-parabolic problem that models the longitudinal deformations of a thermoviscoelastic rod supported unilaterally by an elastic obstacle. The existence and uniqueness of a strong solution is shown. A finite element approximation is proposed and its convergence is proved. Numerical experiments are reported.

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...

Numerical approximation of effective coefficients in stochastic homogenization of discrete elliptic equations

Antoine Gloria (2011)

ESAIM: Mathematical Modelling and Numerical Analysis

We introduce and analyze a numerical strategy to approximate effective coefficients in stochastic homogenization of discrete elliptic equations. In particular, we consider the simplest case possible: An elliptic equation on the d-dimensional lattice d with independent and identically distributed conductivities on the associated edges. Recent results by Otto and the author quantify the error made by approximating the homogenized coefficient by the averaged energy of a regularized corrector (with...

Numerical Approximations of the Relative Rearrangement: The piecewise linear case. Application to some Nonlocal Problems

Jean-Michel Rakotoson, Maria Luisa Seoane (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We first prove an abstract result for a class of nonlocal problems using fixed point method. We apply this result to equations revelant from plasma physic problems. These equations contain terms like monotone or relative rearrangement of functions. So, we start the approximation study by using finite element to discretize this nonstandard quantities. We end the paper by giving a numerical resolution of a model containing those terms.

Numerical computation of solitons for optical systems

Laurent Di Menza (2009)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we present numerical methods for the determination of solitons, that consist in spatially localized stationary states of nonlinear scalar equations or coupled systems arising in nonlinear optics. We first use the well-known shooting method in order to find excited states (characterized by the number k of nodes) for the classical nonlinear Schrödinger equation. Asymptotics can then be derived in the limits of either large k are large nonlinear exponents σ . In a second part, we compute...

Currently displaying 1301 – 1320 of 2193