The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1821 –
1840 of
2193
We are interested in the discretization of the heat equation with a diffusion coefficient depending on the space and time variables. The discretization relies on a spectral element method with respect to the space variables and Euler's implicit scheme with respect to the time variable. A detailed numerical analysis leads to optimal a priori error estimates.
We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...
We consider the Stokes problem provided with non standard boundary conditions which involve the normal component of the velocity and the tangential components of the vorticity. We write a variational formulation of this problem with three independent unknowns: the vorticity, the velocity and the pressure. Next we propose a discretization by spectral element methods which relies on this formulation. A detailed numerical analysis leads to optimal error estimates for the three unknowns and numerical...
We study spectral discretizations for singular perturbation problems. A special technique of stabilization for the spectral method is proposed. Boundary layer problems are accurately solved by a domain decomposition method. An effective iterative method for the solution of spectral systems is proposed. Suitable components for a multigrid method are presented.
By using an inductive procedure we prove that the Galerkin finite element approximations of electromagnetic eigenproblems modelling cavity resonators by elements of any fixed order of either Nedelec’s edge element family on tetrahedral meshes are convergent and free of spurious solutions. This result is not new but is proved under weaker hypotheses, which are fulfilled in most of engineering applications. The method of the proof is new, instead, and shows how families of spurious-free elements can...
By using an inductive procedure we prove that the Galerkin
finite element approximations of electromagnetic eigenproblems
modelling cavity resonators by elements of any fixed order of
either Nedelec's edge element family on tetrahedral meshes are
convergent and free of spurious solutions. This result is not
new but is proved under weaker hypotheses, which are fulfilled
in most of engineering applications. The method of the proof
is new, instead, and shows how families of spurious-free
elements...
We consider some abstract nonlinear equations in a separable Hilbert space and some class of approximate equations on closed linear subspaces of . The main result concerns stability with respect to the approximation of the space . We prove that, generically, the set of all solutions of the exact equation is the limit in the sense of the Hausdorff metric over of the sets of approximate solutions, over some filterbase on the family of all closed linear subspaces of . The abstract results are...
We consider numerical approximations of stationary incompressible Navier-Stokes flows in 3D exterior domains, with nonzero velocity at infinity. It is shown that a P1-P1 stabilized finite element method proposed by C. Rebollo: A term by term stabilization algorithm for finite element solution of incompressible flow problems, Numer. Math. 79 (1998), 283–319, is stable when applied to a Navier-Stokes flow in a truncated exterior domain with a pointwise boundary condition on the artificial boundary....
We give an analysis of the stability and uniqueness of the simply
laminated microstructure for all three tetragonal to monoclinic
martensitic transformations. The energy density for tetragonal to
monoclinic transformations has four rotationally invariant wells since
the transformation has four variants. One of these tetragonal to
monoclinic martensitic transformations corresponds to the shearing of
the rectangular side, one corresponds to the shearing of the square
base, and one corresponds to...
Currently displaying 1821 –
1840 of
2193