An expression of classical dynamics
This paper considers the data-based identification of industrial robots using an instrumental variable method that uses off-line estimation of the joint velocities and acceleration signals based only on the measurement of the joint positions. The usual approach to this problem relies on a ‘tailor-made’ prefiltering procedure for estimating the derivatives that depends on good prior knowledge of the system's bandwidth. The paper describes an alternative Integrated Random Walk SMoothing (IRWSM) method...
The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop model-based FTC schemes for systems that have no unique equilibria and are therefore difficult to linearise. Linear Parameter Varying (LPV) strategies are well suited to model-based control and fault estimation for such systems. This contribution involves...
Accurate bone motion reconstruction from marker tracking is still an open and challenging issue in biomechanics. Presented in this paper is a novel approach to gait motion reconstruction based on kinematical loops and functional skeleton features extracted from segmented Magnetic Resonance Imaging (MRI) data. The method uses an alternative path for concatenating relative motion starting at the feet and closing at the hip joints. From the evaluation of discrepancies between predicted and geometrically...
A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables. Spectral...
A coupled finite/boundary element method to approximate the free vibration modes of an elastic structure containing an incompressible fluid is analyzed in this paper. The effect of the fluid is taken into account by means of one of the most usual procedures in engineering practice: an added mass formulation, which is posed in terms of boundary integral equations. Piecewise linear continuous elements are used to discretize the solid displacements and the fluid-solid interface variables....
We analyze a force-based quasicontinuum approximation to a one-dimensional system of atoms that interact by a classical atomistic potential. This force-based quasicontinuum approximation can be derived as the modification of an energy-based quasicontinuum approximation by the addition of nonconservative forces to correct nonphysical “ghost” forces that occur in the atomistic to continuum interface during constant strain. The algorithmic simplicity and consistency with the purely atomistic model at...
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and deduce from it the long-time convergence. The main difficulty comes from natural degeneracy of birth terms that we overcome with a regularization technique. We then extend the results to the case with several parameters and recall the link between this...
The quasicontinuum method is a coarse-graining technique for reducing the complexity of atomistic simulations in a static and quasistatic setting. In this paper we aim to give a detailed a priori and a posteriori error analysis for a quasicontinuum method in one dimension. We consider atomistic models with Lennard–Jones type long-range interactions and a QC formulation which incorporates several important aspects of practical QC methods. First, we prove the existence, the local uniqueness...
We introduce an one-dimensional thermodynamical particle model which is efficient in predictions about a microscopical structure of animal/human groups. For such a model we present analytical calculations leading to formulae for time clearance distribution as well as for time spectral rigidity. Furthermore, the results obtained are reformulated in terms of vehicular traffic theory and consecutively compared to experimental traffic data.