Displaying 361 – 380 of 442

Showing per page

Symmetries of a dynamical system represented by singular Lagrangians

Monika Havelková (2012)

Communications in Mathematics

Dynamical properties of singular Lagrangian systems differ from those of classical Lagrangians of the form L = T - V . Even less is known about symmetries and conservation laws of such Lagrangians and of their corresponding actions. In this article we study symmetries and conservation laws of a concrete singular Lagrangian system interesting in physics. We solve the problem of determining all point symmetries of the Lagrangian and of its Euler-Lagrange form, i.e. of the action. It is known that every point...

Systèmes hamiltoniens k-symplectiques.

Azzouz Awane, Mohamed Belam, Sadik Fikri, Mohammed Lahmouz, Bouchra Naanani (2002)

Revista Matemática Complutense

We study some properties of the k-symplectic Hamiltonian systems in analogy with the well-known classical Hamiltonian systems. The integrability of k-symplectic Hamiltonian systems and the relationships with the Nambu's statistical mechanics are given.

The complex geometry of an integrable system

Ahmed Lesfari (2003)

Archivum Mathematicum

In this paper, a finite dimensional algebraic completely integrable system is considered. We show that the intersection of levels of integrals completes into an abelian surface (a two dimensional complex algebraic torus) of polarization 2 , 8 and that the flow of the system can be linearized on it.

The degenerate C. Neumann system I: symmetry reduction and convexity

Holger Dullin, Heinz Hanßmann (2012)

Open Mathematics

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ,...

The equivalence of controlled lagrangian and controlled hamiltonian systems

Dong Eui Chang, Anthony M. Bloch, Naomi E. Leonard, Jerrold E. Marsden, Craig A. Woolsey (2002)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled lagrangians and its hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems

Dong Eui Chang, Anthony M. Bloch, Naomi E. Leonard, Jerrold E. Marsden, Craig A. Woolsey (2010)

ESAIM: Control, Optimisation and Calculus of Variations

The purpose of this paper is to show that the method of controlled Lagrangians and its Hamiltonian counterpart (based on the notion of passivity) are equivalent under rather general hypotheses. We study the particular case of simple mechanical control systems (where the underlying Lagrangian is kinetic minus potential energy) subject to controls and external forces in some detail. The equivalence makes use of almost Poisson structures (Poisson brackets that may fail to satisfy the Jacobi identity)...

Currently displaying 361 – 380 of 442