Displaying 61 – 80 of 442

Showing per page

Characterization of diffeomorphisms that are symplectomorphisms

Stanisław Janeczko, Zbigniew Jelonek (2009)

Fundamenta Mathematicae

Let ( X , ω X ) and ( Y , ω Y ) be compact symplectic manifolds (resp. symplectic manifolds) of dimension 2n > 2. Fix 0 < s < n (resp. 0 < k ≤ n) and assume that a diffeomorphism Φ : X → Y maps all 2s-dimensional symplectic submanifolds of X to symplectic submanifolds of Y (resp. all isotropic k-dimensional tori of X to isotropic tori of Y). We prove that in both cases Φ is a conformal symplectomorphism, i.e., there is a constant c ≠0 such that Φ * ω Y = c ω X .

Comparison and existence results for evolutive non-coercive first-order Hamilton-Jacobi equations

Alessandra Cutrì, Francesca Da Lio (2007)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we prove a comparison result between semicontinuous viscosity subsolutions and supersolutions to Hamilton-Jacobi equations of the form u t + H ( x , D u ) = 0 in I R n × ( 0 , T ) where the Hamiltonian H may be noncoercive in the gradient Du. As a consequence of the comparison result and the Perron's method we get the existence of a continuous solution of this equation.

Comportement semi-classique du spectre des hamiltoniens quantiques elliptiques

Didier Robert, Bernard Helffer (1981)

Annales de l'institut Fourier

Dans cet article nous généralisons les résultats obtenus par J. Chazarain sur le spectre d’opérateurs de Schrödinger P ( h ) = h 2 2 Δ + V lorsque h 0 . Nous étendons ses résultats aux opérateurs pseudo-différentiels globalement elliptiques d’ordre m &gt; 0 .

Currently displaying 61 – 80 of 442