Inertial manifolds and stabilization of nonlinear beam equations with Balakrishnan-Taylor damping.
Ingham [6] ha migliorato un risultato precedente di Wiener [23] sulle serie di Fourier non armoniche. Modificando la sua funzione di peso noi otteniamo risultati ottimali, migliorando precedenti teoremi di Kahane [9], Castro e Zuazua [3], Jaffard, Tucsnak e Zuazua [7] e di Ullrich [21]. Applichiamo poi questi risultati a problemi di osservabilità simultanea.
We study linear combinations of exponentials e^{iλ_nt} , λ_n ∈ Λ in the case where the distance between some points λ_n tends to zero. We suppose that the sequence Λ is a finite union of uniformly discrete sequences. In (Avdonin and Ivanov, 2001), necessary and sufficient conditions were given for the family of divided differences of exponentials to form a Riesz basis in space L^2 (0,T). Here we prove that if the upper uniform density of Λ is less than T/(2π), the family of divided differences can...
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
We consider a class of second-gradient elasticity models for which the internal potential energy is taken as the sum of a convex function of the second gradient of the deformation and a general function of the gradient. However, in consonance with classical nonlinear elasticity, the latter is assumed to grow unboundedly as the determinant of the gradient approaches zero. While the existence of a minimizer is routine, the existence of weak solutions is not, and we focus our efforts on that question...
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that is well-suited for this class of solutions and...
The purpose of this paper is to apply particle methods to the numerical solution of the EPDiff equation. The weak solutions of EPDiff are contact discontinuities that carry momentum so that wavefront interactions represent collisions in which momentum is exchanged. This behavior allows for the description of many rich physical applications, but also introduces difficult numerical challenges. We present a particle method for the EPDiff equation that...